久久99热精品,久久国产精品久久,久久人人国产,国产精品久久久久久久久久嫩草,欧美伦理电影免费观看,国产女教师精品久久av,精品国产乱码久久久久久虫虫

勾股定理應用優(yōu)秀教案

時間:2021-03-30 10:46:44 教案 我要投稿

勾股定理應用優(yōu)秀教案

  教學課題:勾股定理的應用

勾股定理應用優(yōu)秀教案

  教學時間(日期、課時):

  教材分析:

  學情分析:

  教 學目標:

  能運用勾股定理及直角三角形的判定條件解決實際問題.

  在運用勾股定理解決實際問題的過程中,感受數(shù)學的“轉化” 思想(把解斜三角形問題轉化為解直角三角形的問題),進一步發(fā)展有條理思考和有條理表達的能力,體會數(shù)學的應用價值.

  教學準備

  《數(shù)學學與練》

  集體備課意見和主要參考資料

  頁邊批注

  教學過 程

  一. 新課導入

  本課時的教學內容是勾股定理在實際中的應用。除課本提供的情境外,教學中可以根據實際情況另行設計一些具體情境,也利用課本提供的素材組織數(shù)學活動。比如,把課本例2改編為開放式的問題情境:

  一架長為10m的梯子斜靠在墻上,梯子的頂端距地面的垂直距離為8m.如果梯子的頂端下滑0.5m,你認為梯子的底端會發(fā)生什么變化?與同學交流 .

  創(chuàng)設學生身邊的問題情境,為每一個學生提供探索的空間,有利于發(fā)揮學生的主體性;這樣的問題學生常常會從自己的生活經驗出發(fā),產生不同的思考方法和結論(教學中學生可能的結論有:底端也滑動 0.5m;如果梯子的頂端滑到地面 上,梯子的頂端則滑動8m,估計梯子底端的滑動小于8m,所以梯子的頂端 下滑0.5m,它的底端的滑動小于0.5m;構造直角三角形,運用勾股定理計算梯子滑動前、后底端到墻的垂直距離的'差,得出梯子底端滑動約0.61m的結論等);通過與同學交流,完善各自的想法,有利于學生主動地把實際問題轉化為數(shù)學問題 ,從中感受用數(shù)學的眼光審視客觀世界的樂趣 .

  二. 新課講授

  問題一 在上面的情境中,如果梯子的頂端下滑 1m,那么梯子的底端滑動多少米?

  組織學生嘗試用勾股定理解決問題,對有困難的學生教師給予及時的幫助和指導.

  問題二 從上面所獲得的信息中,你對梯子下滑的變化過程有進一步的思考嗎?與同學交流.

  設計問題二促使學生能主動積 極地從數(shù)學的角度思考實際問題.教學中學生可能會有多種思考.比如,①這個變化過程中,梯子底端滑動的距離總比頂端下滑的距離大;②因為梯子頂端 下滑到地面時,頂端下滑了8m,而底端只滑動4m,所以這個變化過程中,梯子底端滑動的距離不一定比頂端下滑的距離大;③由勾股數(shù)可知,當梯子頂端下滑到離地面的垂直距離為6m,即頂端下滑2m時,底端到墻的垂直距離是8m,即底端電滑動2m等。教學中不要把尋找規(guī)律作為這個探索活動的目標,應讓學生進行充分的交流,使學生逐步學會運用數(shù)學的眼光去審視客觀世界,從不同的角度去思考問題,獲得一些研究問題的經驗和方法.

  3.例題教學

  課本的例1是勾股定理的簡單應用,教學中可根據教學的實際情況補充一些實際應用問題,把課本習題2.7第4題作為補充例題.通過這個問題的討論,把“32+b2=c2”看作一個方程,設折斷處離地面x尺,依據問題給出的條件就把它轉化為熟悉的會解的一元二次方程32+x2=(10—x)2,從中可以讓學生感受數(shù)學的“轉化”思想,進一步了解勾股定理的悠久歷史和我國古代人民的聰明才智.

  三. 鞏固練習

  1.甲、乙兩人同時從同一地點出發(fā),甲往東走了4km,乙往南走了6km,這時甲、乙兩人相距__________km.

  2.如圖,一圓柱高8cm,底面半徑2cm,一只螞蟻從點A爬到點B處吃食,要爬行的最短路程( 取3)是( ).

 。ˋ)20cm (B)10cm (C)14cm (D)無法確定

  3.如圖,一塊草坪的形狀為四邊形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m.求這塊草坪的面積.

  四. 小結

  我們知道勾股定理揭示了直角三角形的三邊之間的數(shù)量關系,已知直角 三角形中的任意兩邊就可以依據勾股定理求出第三邊.從應用勾股定理解決實際問題中,我們進一步認識到把直角三角形中三邊關系“a2+b2=c2”看成一個方程,只要 依據問題的條件把它轉化為我們會解的方程,就把解實際問題轉化為解方程.

【勾股定理應用優(yōu)秀教案】相關文章:

勾股定理說課稿04-27

勾股定理說課稿04-27

《勾股定理》的說課稿范文03-15

勾股定理說課稿15篇02-04

《探索勾股定理》的說課稿11-30

勾股定理說課稿范文7篇02-04

勾股定理的逆定理說課稿12-04

八年級數(shù)學上冊《勾股定理的應用》教學設計反思03-03

將進酒教案優(yōu)秀教案08-27

勾股定理的逆定理說課稿4篇12-04

昭通市| 磐石市| 五华县| 丰城市| 峨山| 若尔盖县| 彰化市| 兴安县| 北辰区| 枝江市| 栖霞市| 宁蒗| 临颍县| 台湾省| 萍乡市| 天柱县| 潜山县| 新河县| 六盘水市| 大冶市| 昌黎县| 云安县| 贡嘎县| 香港| 天全县| 肇州县| 峨眉山市| 开远市| 沿河| 曲阳县| 旬邑县| 怀宁县| 扎赉特旗| 噶尔县| 无棣县| 曲阜市| 芜湖县| 台东县| 泸溪县| 渭南市| 保康县|