久久99热精品,久久国产精品久久,久久人人国产,国产精品久久久久久久久久嫩草,欧美伦理电影免费观看,国产女教师精品久久av,精品国产乱码久久久久久虫虫

等腰三角形性質(zhì)定理說課稿

時間:2021-11-07 11:20:15 說課稿 我要投稿

等腰三角形性質(zhì)定理說課稿

  作為一位無私奉獻的人民教師,就有可能用到說課稿,說課稿有助于提高教師理論素養(yǎng)和駕馭教材的能力。怎樣寫說課稿才更能起到其作用呢?以下是小編為大家收集的等腰三角形性質(zhì)定理說課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。

等腰三角形性質(zhì)定理說課稿

  一、說教材

  本節(jié)課是在學生掌握了一般三角形基礎(chǔ)知識和初步推論證明的基礎(chǔ)上進行學習的,擔負著訓練學生學會分析證明思路的任務(wù),在培養(yǎng)學生邏輯推理能力方面有著非常重要的作用。等腰三角形兩底角相等的性質(zhì)是今后論證兩角相等的的依據(jù)之一,等腰三角形底邊上的三條主要線段重合的性質(zhì)是今后論證兩條線段相等、兩個角相等及兩條直線垂直的重要依據(jù),因此在教材中處于非常重要的地位。

  二、說教學目標

  知識與能力:探索并掌握等腰三角形性質(zhì)定理,能運用它們進行有關(guān)的論證和計算。理解等腰三角形和等邊三角形性質(zhì)定理之間的聯(lián)系。過程與方法:培養(yǎng)學生對命題的抽象概括能力,逐步滲透幾何證題的基本思想方法:分析法和綜合法。情感與態(tài)度:引導學生進行規(guī)律的再發(fā)現(xiàn),培養(yǎng)學生勇于實踐、大膽探索的精神。加強學生數(shù)學應用意識。

  三、教學重點與難點

  重點:等腰三角形的性質(zhì)定理。難點:等腰三角形三線合一性質(zhì)的運用四、說教法與學法課堂教學要體現(xiàn)以學生發(fā)展為本的精神,因此本堂課我采取了“開放型的探究式”教學模式,從問題提出到問題解決都竭力把參與認知過程的主動權(quán)交給學生,使學生全面參與、全員參與、全程參與,真正確立其主體地位。而教師只是作為數(shù)學學習的組織者、引導者、合作者,及時地給以引導、點撥、糾正。五、說教學過程:學生的學習過程是在其原有認知基礎(chǔ)上的主動建構(gòu),因此我依據(jù)學生的認知規(guī)律將教學過程分為以下五個環(huán)節(jié):

  教學過程教學活動設(shè)計意圖

  一、回顧與思考電腦展示人字型屋頂?shù)膱D像,提問:

  1、屋頂設(shè)計成了何種幾何圖形?2、我們都知道它是一種特殊的三角形,那么它特殊在哪里呢?(兩腰相等,是軸對稱圖形)3、它的對稱軸是哪一條呢?由日常生活中的等腰三角形引出課題,目的在于培養(yǎng)學生從實際問題中抽象出數(shù)學問題的能力。同時創(chuàng)造豐富的舊知環(huán)境,有利于幫助學生找準新舊知識的連接點,特別是問題3,其實就是等腰三角形三線合一性質(zhì)的伏筆。除了這些特殊點,等腰三角形還有其它特殊性質(zhì)嗎?這節(jié)課我們就要一起來研究等腰三角形的性質(zhì)(由此引出課題)現(xiàn)代教學論認為,在正式進行發(fā)現(xiàn)過程前要讓學生對探索的目標、意義認識得十分明確,做好探索的物質(zhì)準備和精神準備。

  二、觀察與表達1、觀察猜想請同學們拿出準備好的等腰三角形,與教師一起按照要求,把兩腰疊在一起,觀察一下你有什么發(fā)現(xiàn)。教師用多媒體課件演示等腰三角形ABC疊合情況,請學生思考你能得出哪些結(jié)論。 2、得出定理學生回答發(fā)現(xiàn)后,教師給予指導,用規(guī)范的數(shù)學語言進行逐條歸納,得出兩個性質(zhì)定理:定理1:等腰三角形兩底角相等。

  定理2:等腰三角形的頂角平分線、底邊上的中線和高線互相重合。

  通過讓學生動手操作,觀察、猜想,體驗知識的發(fā)生、發(fā)現(xiàn)過程,變灌注知識為學生主動獲取知識。

  學習內(nèi)容不再以定論的形式呈現(xiàn),而是以問題形式間接呈現(xiàn);學習的心理機制不再是僅僅是同化,而是順應。

  三、了解與探究3、探索定理一、(A組口答,B組獨立解答)A組:1、等腰直角三角形的兩個銳角各等于幾度?2、若等腰三角形頂角為40度,則它的頂角為幾度?3、若等腰三角形底角為40度,則它的底角為幾度?B組:1、若等腰三角形一個內(nèi)角為40度,則它的其余各角為幾度?2、若等腰三角形一個內(nèi)角為120度,則它的其余各角為幾度?3、一個內(nèi)角為60度,則它的其余各角為幾度?(A組口答,B組獨立解答)由此引出推論:等邊三角形各個角都相等,且各個角都等于60°。

  二、根據(jù)性質(zhì)2填空:

  (1)∵AB=AC,AD⊥BC,∴,。

  (2)∵AB=AC,BD=CD,∴,。 A

  B D C (3)∵AB=AC,∠1=∠2,∴,。為了對定理進行進一步探索,設(shè)計了以下練習:練習一的整體設(shè)計遵循低起點、小分階、大容量、高密度的原則,其目的是要學生掌握應用等腰三角形性質(zhì)定理1與三角形內(nèi)角和定理求角的度數(shù)的'規(guī)律,但教師不是直接將規(guī)律灌輸給學生,而是讓學生在練習過程中自己發(fā)現(xiàn)規(guī)律,使學生獲得從問題中探索共同屬性的思維能力。從認知結(jié)構(gòu)看,利用三線合一性質(zhì)來證明角相等、線段相等或垂直與學生原有認知結(jié)構(gòu)聯(lián)系較少,需要建構(gòu)新的認知結(jié)構(gòu),是一種“順應”過程,對學生來說有一定困難,因此設(shè)計了下面一組填空題,幫助學生進行建構(gòu)活動。同時,提醒學生注意性質(zhì)應用應以等腰三角形為前提,為例2的教學作了輔墊,起到分散難點的作用。四、應用與提高應用舉例:如圖,某房屋的頂角

  ∠BAC=120°,過屋頂A的立柱AD⊥BC,屋椽AB=AC,求頂架上的∠B, ∠C, ∠CAD的度數(shù)。

  例1:求證等腰三角形兩底角平分線相等A

  E D

  B C

  由于這是個用文字語言敘述的的幾何命題,師生共同商討,將解題過程分為以下幾個步驟:①根據(jù)命題畫出相應的圖形,并標出字母②通過分析題設(shè)結(jié)論,將命題翻譯為幾何符號語言,寫出已知與求證。 ③探索證法在尋求證法時啟發(fā)學生從“已知”、“求證”兩方面出發(fā)進行思考。從已知出發(fā):a:由AB=AC聯(lián)想到什么

  b:BD、CE是△ABC的角平分線聯(lián)想到什么

  c:由a、b聯(lián)想到什么

  d:由a、b、c聯(lián)想到什么

  e:由d聯(lián)想到什么

  從求證出發(fā):證明兩條線段相等通常用什么方法?(全等三角形)。這兩條線段分別在哪兩個三角形中?這兩個三角形全等嗎?如何證明?本課從居民建筑人字梁結(jié)構(gòu)中抽象出幾何問題,通過探索實踐活動得出結(jié)論,在這里,再將得到的結(jié)論應用到實踐中,從而解決了人字梁結(jié)構(gòu)中的實際問題。這樣既有前后呼應,又體現(xiàn)了“數(shù)學來源于生活,應用于生活”的思想,有利于加強學生的數(shù)學應用意識。

  “證明”的教學所關(guān)注的是,對證明基本方法和證明過程的體驗,而不是追求所證命題的數(shù)量、證明的技巧。因此在例1教學中,有意讓學生來確定學習任務(wù)與步驟,充分調(diào)動其學習積極性。

  分析法和綜合法是基本的數(shù)學思想方法,因此在這里要求學生從兩方面都能夠思考問題。但這對于剛接觸論證幾何不久的學生來說,有一定的難度。所以,由教師提出一系列問題,引導學生進行聯(lián)想。

  本題是通過三角形全等來證明兩條角平分線相等,而這對全等三角形可是△ABD和△ACE也可是△BCE和△CBD分別用到了公共邊和公共角這兩對元素,因此在教學過程中將充分利用這一點,組織學生探索證明的不同思路,并進行適當?shù)谋容^和討論,有利于開闊學生的視野。四、應用與提高例2:已知:如圖,△ A

  O

  B D C O’ ABC中,AB=AC,O是△ABC內(nèi)一點,且OB=OC,AO的延長線交BC與D.

  求證:BD=CD,AD⊥BC

  思考:(1)本題的結(jié)論有何特

  殊之處?——證明兩個結(jié)論

 。2)你準備如何得出這兩個結(jié)論?——分別認證或同時證明

 。3)哪一種簡捷?利用什

  么性質(zhì)?

  在此基礎(chǔ)上請學生按照例1的思考方法自己尋找解題思路,可以在小組間進行討論。

  變式拓展:

 。1)如圖,在例2中若點O是△ABC外一點,AO連線交BC于D,如何求證?

 。2)若點O在BC上呢?

  經(jīng)過例1的學習,學生已有一定推理基礎(chǔ),因此應放手讓學生自己去發(fā)現(xiàn)證題思路,從而學到新的研究數(shù)學學習的方法,并逐漸內(nèi)化為自己的經(jīng)驗。同時也體現(xiàn)了自主探索、合作交流的學習方式。

  在這里有意通過變式讓學生經(jīng)歷圖形變換過程,并使他們感受到在一定條件下,圖形變換不會改變圖形的實質(zhì),最后將點O移到BC上,使學生體驗了從一般到特殊的過程。想一想:記一塊等腰直角三角尺的底邊中點為,再從頂點懸掛一個鉛錘,把這塊三角尺放在房梁上,如果懸線通過點M就能確定房梁是水平的,為什么?通過想一想進一步突出重點與難點,也有利于引導學生運用數(shù)學的思維方式去觀察、分析現(xiàn)實生活,增強應用數(shù)學的意識。五、心得與體會

  通過今天這堂課的研究,我明確了,我的收獲與感受有,我還有疑惑之處是。請學生按這一模式進行小結(jié),培養(yǎng)學生學習-總結(jié)-學習-反思的良好習慣,同時通過自我的評價來獲得成功的快樂,提高學生學習的自信心。六、作業(yè)(1)作業(yè)本上相應的作業(yè)。(2)已知:D、E在△ABC的邊BC上,AB=AC,AD=AE,求證:BD=CE(1)進一步鞏固和提高所學知識(2)及時反饋、查漏補缺(3)體現(xiàn)層次性與開放性六、說評價

【等腰三角形性質(zhì)定理說課稿】相關(guān)文章:

等腰三角形的性質(zhì)定理和判定定理及其證明01-05

勾股定理的逆定理說課稿12-04

勾股定理的逆定理說課稿4篇12-04

《探索勾股定理》的說課稿11-30

小數(shù)的性質(zhì)說課稿11-08

余弦定理說課稿6篇11-12

垂徑定理說課稿2篇11-15

余弦函數(shù)的性質(zhì)說課稿11-06

垂徑定理及其推論說課稿11-19

兰溪市| 长沙市| 安化县| 含山县| 和平县| 尉犁县| 武汉市| 白沙| 深水埗区| 凯里市| 青田县| 九台市| 金堂县| 防城港市| 左权县| 定日县| 镇原县| 安西县| 高密市| 大石桥市| 海兴县| 丁青县| 房山区| 德昌县| 鄱阳县| 保亭| 宜春市| 延长县| 株洲市| 楚雄市| 永清县| 额敏县| 内江市| 米脂县| 萨嘎县| 固安县| 上犹县| 昭通市| 嘉定区| 扬中市| 赣州市|