久久99热精品,久久国产精品久久,久久人人国产,国产精品久久久久久久久久嫩草,欧美伦理电影免费观看,国产女教师精品久久av,精品国产乱码久久久久久虫虫

八年級數(shù)學說課稿

時間:2022-11-21 13:24:54 數(shù)學說課稿 我要投稿

八年級數(shù)學說課稿(合集15篇)

  作為一名優(yōu)秀的教育工作者,通常需要用到說課稿來輔助教學,說課稿有助于順利而有效地開展教學活動。說課稿應該怎么寫呢?以下是小編為大家整理的八年級數(shù)學說課稿,歡迎大家借鑒與參考,希望對大家有所幫助。

八年級數(shù)學說課稿(合集15篇)

八年級數(shù)學說課稿1

  對于本節(jié)課,我將以教什么,怎樣教,為什么這樣教為思路,從教學背景、教法學法、教學過程、教學設計說明四個方面具體闡述我對這節(jié)課的理解和設計。

  1、教材的地位和作用

  本節(jié)內(nèi)容分兩課時完成。我設計的是第一課時的教學,主要內(nèi)容是分式概念、掌握分式有意義,值為0的條件。因為它是在學生學習了分數(shù)、整式及因式分解的基礎上,又一代數(shù)學習的基本內(nèi)容,是小學所學分數(shù)的延伸和擴展,而學好本節(jié)課,為今后繼續(xù)學習分式、函數(shù)、方程等知識作好鋪墊,特別是對“分式有無意義的討論”為以后學習反比例函數(shù)作了鋪墊。因此它起著承上啟下的作用。

  2、教學目標

  一節(jié)課的教學目標準確與否,直接關(guān)系到這節(jié)課的整體設計,關(guān)系到學生發(fā)展的水平和教學效果的好壞,因此預設教學目標時,我力求準確。依據(jù)新課程的要求,我將本節(jié)課的教學目標確定為以下3個方面:

 。1)知識與技能目標:讓學生經(jīng)歷用分式表示現(xiàn)實情境中數(shù)量關(guān)系的過程,從而了解分式概念,學會判別分式何時有意義,進一步培養(yǎng)學生代數(shù)表達能力和分析問題、解決問題的能力、以及創(chuàng)新能力。

 。2)過程與方法目標:經(jīng)歷分式概念的自我建構(gòu)過程及用分式描述數(shù)量關(guān)系的過程,學會與人合作,并獲得代數(shù)學習的一些常用方法:類比轉(zhuǎn)化、合情推理、抽象概括等。

 。3)情感與態(tài)度目標:通過豐富的數(shù)學活動,使學生獲得成功的經(jīng)驗,體驗數(shù)學活動充滿探索和創(chuàng)造,體會分式的模型思想,培養(yǎng)學生的辯證唯物主義觀點。

  3、教學重難點及關(guān)鍵:

  分式概念是《分式》這一章學習的起點和基礎,因此我把理解分式的概念確定為本節(jié)課的教學重點。又由于初中學生的認知結(jié)構(gòu)中存在著這樣的障礙:不善于概括數(shù)學材料、缺乏對字母及其他數(shù)學符號用于運算的能力,所以判定分式有意義、分式的值為0時的條件,自然就成了本節(jié)課的教學難點。而部分學生容易忽視分式的分母值不能為0這個條件,因此我認為突破這個難點的關(guān)鍵是通過類比分數(shù)的意義,加強對分式分母值不能為0的理解。

  一、教法學法分析

  1、學情分析

  由于我校八年級學生,基礎比較扎實,學習能力較強。通過小學分數(shù)的學習,學生頭腦中已經(jīng)形成了分數(shù)的相關(guān)知識。學生可能會用學習分數(shù)的思維去認識、理解分式。但是分式的分母不再是具體的數(shù),而是抽象的含字母的整式,會隨著字母的取值的變化而變化。為了幫助學生確實掌握所學內(nèi)容,我在教學過程中特別設置了鞏固性練習,對于教材中的例題和習題將作適當?shù)难由旌屯卣辜白兪教幚?

  2.教學方法:

  針對本班學生情況,為了適合學生已有的認識水平和認知規(guī)律,更好地突出重點、化解難點,在教學過程中,我采用“引導——發(fā)現(xiàn)式教學法”,引導學生運用類比的思維方法進行自主探究. 在實施教學的過程中注意學生分析問題、解決問題等能力的培養(yǎng)。讓學生全面地掌握分式的意義,體會到數(shù)學不是一門枯燥的學科,對學習數(shù)學充滿信心。為了提高課堂效果,適當?shù)妮o以多媒體技術(shù), 激發(fā)學生的學習興趣,同時也增大教學容量,提高教學效率。

  3.學法指導

  觀察、概括、總結(jié)、歸納、類比、聯(lián)想是學法指導的重點。

  在課堂教學中,不是老師單純的傳授知識,而是在老師指引下讓學生自己學。要把教法融于學法中,在學法中體現(xiàn)教法。在活動過程中,我將引導學生體會用類比的方法,擴展知識的過程,培養(yǎng)他們學習的主動性和積極性。讓學生通過對問題的討論歸納,在與老師的交流中學習知識,從而達到 “學會”和 “會學”的目的。

  二、教學過程(多媒體教學)

  《數(shù)學課程標準》明確指出:“數(shù)學教學是數(shù)學活動的教學,學生是數(shù)學學習的主人!痹诮虒W過程中,我充分考慮到如何更多地向?qū)W生提供從事數(shù)學活動的機會,堅持以知識為載體,思維為主線,能力為目標的設計原則, 所以我將本節(jié)課的教學過程設為以下六個環(huán)節(jié):

  第一環(huán)節(jié)是“創(chuàng)設情景、提出問題 ”:為了引導學生從自己熟悉的生活背景中發(fā)現(xiàn)、掌握和運用數(shù)學,在現(xiàn)實情境中進一步理解用字母表示數(shù)的意義,在這一環(huán)節(jié)里我設計一道有關(guān)四川汶川特大地震捐款的事例,并設置了6個問題。從學生熟悉的整式及其運算入手,引導學生從舊知中去發(fā)現(xiàn)分式,找到新知的“生長點”和學生思維的“最近發(fā)展區(qū)”,從而更好地進行分式概念的建構(gòu)活動。落實教學目標。

  針對學生的發(fā)現(xiàn),在第二個環(huán)節(jié) “類比聯(lián)想 形成概念”

  我將采用“議一議”的方式引導學生繼續(xù)觀察新式子的特征,類比分數(shù),合理聯(lián)想。從而使學生水到渠成地概括出分式的概念及一般表示形式。

  第三環(huán)節(jié)“指導運用 鞏固概念”

  通過小組內(nèi)互舉例子,互說判定過程,鼓勵學生積極參與活動,在活動過程中強化分式概念,并及時糾正學生可能因分數(shù)負遷移所造成的認知障礙,注意辨析 與 的本質(zhì)區(qū)別和 不是分式的問題,指出判斷一個代數(shù)式是不是分式,不是決定于這個式子里是否含分數(shù)線,關(guān)鍵要看分母中是否含有字母。最后指出“整式和分式統(tǒng)稱為有理式”。同時還讓學生明白:分數(shù)線具有 (1)表示括號;(2)表示除號雙重意義。

  到此學生對分式的概念有了初步的認識,但并不完整。接下來如何識別分式有意義,是本節(jié)課的難點,也是探究學習的好素材。課本中分式有意義的條件是直接給出的,而我在以往的教學中發(fā)現(xiàn)學生往往忽視這個條件或是對分母整體不為零認識模糊,為了更好地突破難點,

  我在第四環(huán)節(jié)“循序漸進 再探新知”

  創(chuàng)設了以下活動供學生自主探究分式有意義的條件:

  首先是組織學生獨立填寫表格:

  表格的設計,是為了讓學生通過對分式中的字母賦值,將“代數(shù)化”了的分式還原為他們熟悉的分數(shù)。通過填表,不同層次學生的發(fā)現(xiàn)將會有差異,此時正是傾聽與交流的好時機,通過互相說服和推廣,他們最終會達成共識:分式的值與字母取值有關(guān),分式并不都有意義。繼而引導學生通過再次類比分數(shù),將陌生問題向熟悉問題轉(zhuǎn)化,自主得出“分式有意義”的條件,建立完整的分式概念,同時滲透從特殊到一般的數(shù)學思想。

  我抓住這一契機,給出:

 。2)、概括分式在什么條件下有意義(對一般表達式 里的分母B作出取值限定:B不能等于零)為了能讓學生對剛獲得的新知識進行最基本的應用,在這一環(huán)節(jié)我安排了例題1是一個有關(guān)分式求值及判別分式何時有意義的問題,比較簡單,可以由學生在自主完成的基礎上同桌交流,然后師生評述,使全體學生特別是學有困難的學生都能達到基本的學習目標,獲得成功感。

  我又順水推舟,再給出以下分式,讓學生討論,(實踐練習1):當x取什么值時,下列分式有意義?你知道嗎?(采用組內(nèi)合作然后組間搶答的形式。)(1)、 (2)、 (3)、 接下來,我又乘勝追擊,問學生:(變式練習):那么以上各分式,當 取什么值時,分式無意義?

  幾個問題由淺入深、由易到難,體現(xiàn)新課標提出的讓不同的學生在數(shù)學上得到不同發(fā)展的教學理念。這一環(huán)節(jié)總的設計意圖是反饋教學,消化知識。

  (五)、變式延伸,進行重構(gòu)

  在掌握了如何求當未知數(shù)取什么值時,分式是有意義還是無意義以后,我將帶領學生進入本節(jié)課的另一個難點,對學生來講思維又將象每個跳動的音符一樣活躍起來了。我問學生:例2:同樣的,以上各分式,當 取什么值時,分式的值為零?

  由于學生對新概念的理解在本質(zhì)方面還是膚淺的,很多學生可能只考慮滿足分子為零即可,所以我給學生幾分鐘的討論時間,這時就有考慮問題較周到的學生通過(2)(3)兩個題發(fā)現(xiàn)問題并不是那么簡單,找出了癥結(jié)。這樣我就能及時的對癥下藥,指出“分式的值為零必須在分式有意義的前提下進行的。因此,分式的值為零必須滿足兩個條件:

  (1)、分子的值為零;(2)、同時分母的值不等于零。從而進一步改善學生原有的認知結(jié)構(gòu)

  為了使這堂課所學到的知識與技能,順利地納入他們已有的知識結(jié)構(gòu)中,

  所以在接下來的第(六)環(huán)節(jié)“ 鞏固深化 分層作業(yè)”里,我將引導學生反思:我們是如何得到分式概念的?分式和我們以前學過的什么知識有聯(lián)系?我們用了哪些方法進一步揭示了分式意義的本質(zhì)?在以上的學習過程中你的收獲有哪些?最后教師整理學生的發(fā)言,歸納小結(jié):

  A、分式是兩個整式相除的商,分數(shù)線可以理解為除號,并含有括號的作用.

  B、分式的分子可以含有字母,也可以不含有字母,但分母必須含有字母.

  C、分式分母的值不能為0,否則分式無意義.

  D、分式的值要為0,需滿足的條件是:分子的值等于0且分母值不為0

  E、有理數(shù)的分類(有理數(shù)包括整式和分式)。

  (2)、作業(yè)布置

 。ㄔO計意圖)考慮到學生的個體差異,以作業(yè)的鞏固性和發(fā)展性為出發(fā)點,我設計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的一個反饋,選做題是對本節(jié)課知識的一個延伸?偟脑O計意圖是反饋教學,鞏固提高。其中有一題自編涉及用分式表示數(shù)量關(guān)系的實際問題的題型。這樣設計對學生是個挑戰(zhàn),可以激發(fā)他們的思維和興趣,通過這樣的逆向思維,可以更好地發(fā)展學生的數(shù)感、符號感,同時培養(yǎng)學生的創(chuàng)新意識。

  以上幾個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學生的交流互動,在教師的整體調(diào)控下,學生通過動腦思考、層層遞進,對知識的理解逐步深入,使課堂效益達到最佳狀態(tài)。

  三、教學設計說明

  回顧整節(jié)課的設計,我主要著力于以下三個方面:

 。ㄒ唬、關(guān)于教材處理:認真處理教材,目的只有一個——為我的學生盡可能多地提供參與活動的機會,在本節(jié)課中主要體現(xiàn)在以下幾點:

  1、通過創(chuàng)設情景、引導學生觀察、類比;聯(lián)想已有知識經(jīng)驗;分析新的問題等活動,讓學生充分感受知識的產(chǎn)生和發(fā)展過程,讓學生始終處于積極思維狀態(tài)之中。

  2、通過分式概念、分式有意義的條件等探究活動,讓學生親歷發(fā)現(xiàn)事物特征、規(guī)律的過程,激發(fā)學生的學習興趣,增強自信心,引發(fā)自行學習的內(nèi)在動機。

  3、在學生學習了分式的概念后,通過一組由淺入深、由易到難的題組(例題及變式訓練),逐題遞進,落實本節(jié)課的教學難點。在教學形式上采用學生“互舉例子、組內(nèi)合作、組間搶答等多種方式,激活學生的思維,營造良好的課堂氛圍。

  4、問題設計注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現(xiàn)的機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效地開發(fā)各層次學生的潛在智能,力求使每個學生都能在原有的基礎上得到發(fā)展

  5、小結(jié)部分通過師生共同反思,目的是為了更好地促進新舊知識之間的聯(lián)系,使新知識與學生頭腦中原有的舊知識建立邏輯性的穩(wěn)固聯(lián)系,從而形成新的認知結(jié)構(gòu)。

  6、通過創(chuàng)設開放性問題發(fā)展學生的創(chuàng)造性思維能力。根據(jù)學生的個性差異,遵循因材施教的原則,設計分層作業(yè),使不同層次的學生都能通過作業(yè)有所收獲。

 。ǘ㈥P(guān)于教與學方法的選擇:我在設計中始終關(guān)注:如何精心組織,讓學生在豐富的活動中探索、交流與創(chuàng)新,因此我選擇了“引導—發(fā)現(xiàn)教學法”,具體做法如下:

 。1)、應用數(shù)、式通性的思想,類比分數(shù),引導學生獨立思考、小組協(xié)作,完成對分式概念及意義的自主建構(gòu),突出數(shù)學合情推理能力的養(yǎng)成;

 。2)、加強應用性,通過再探新知、變式延伸兩個環(huán)節(jié),發(fā)展數(shù)學應用意識,突出分式的模型思想。

  (三)、關(guān)于評價:學生都有表現(xiàn)自己的欲望,希望得到老師和其他同學的認可,要多表揚,多肯定來激勵他們的學習熱情.我在活動中注重運用態(tài)勢、語言對學生進行即興評價,肯定成績,使其具有成就感,提高他們學習的興趣和學習的積極性。

  總之,在本節(jié)教學中,我始終堅持以學生為主體,教師為主導,致力啟用學生已掌握的知識,充分調(diào)動學生的興趣和積極性,使他們最大限度地參與到課堂的活動中,在整個教學過程中我以啟發(fā)學生,挖掘?qū)W生潛力,讓他們展開聯(lián)想的思維,培養(yǎng)其能力為主旨而發(fā)展的。

八年級數(shù)學說課稿2

各位評委,老師們:

  大家好!

  很高興參加這次說課活動,這對我來說是一次難得的機會,深切盼望專家和評委對我的說課內(nèi)容提出寶貴意見。

  今天我說課的內(nèi)容是北師大版數(shù)學八年級上冊第三章圖形的平移與旋轉(zhuǎn)的第一節(jié)《生活中的平移》。

  下面,我從教材分析,教法與學法分析,教學過程分析,設計說明四個方面來談談我對這節(jié)課的教學設想。

  一,教材分析

  1,教材的地位和作用。

  "生活中的平移"對圖形變換的學習具有承上啟下的作用。學生在前面已學習了軸對稱及軸對稱圖形,在此基礎上還將學習生活中的旋轉(zhuǎn)與旋轉(zhuǎn)設計圖案等內(nèi)容。同軸對稱一樣,平移也是現(xiàn)實生活中廣泛存在的現(xiàn)象,是現(xiàn)實世界運動變化的最簡捷的形式之一,它不僅是探索圖形變換的一些性質(zhì)的必要手段,而且也是解決現(xiàn)實世界中的具體問題以及進行數(shù)學交流的重要工具。為綜合運用幾種變換(平移,旋轉(zhuǎn),軸對稱,相似等)進行圖案設計打下基礎。

  2,教學重點與難點。

  平移是現(xiàn)實生活中廣泛存在的現(xiàn)象,它不僅是探索圖形變換的一些性質(zhì)的必要手段,而且也是解決現(xiàn)實世界中的具體問題以及進行數(shù)學交流的重要工具。探索平移的基本性質(zhì),認識平移在現(xiàn)實生活中的廣泛應用是學習本節(jié)內(nèi)容的重點。

  平移特征的獲得過程,教科書中僅用了一段文字,很少的篇幅,對于這個特征,不是要學生死記硬背,而是要學生具備一定的探究歸納能力,對八年級的學生來說,有一定的難度,因此本課的難點是平移特征的探索及理解。

  3,教學目標:

  根據(jù)上述教材分析,考慮到學生已有的認知結(jié)構(gòu),心理特征,制定如下教學目標

 。1)知識目標:

  通過具體實例認識平移,理解平移的基本內(nèi)涵,理解平移前后兩個圖形對應點連線平行且相等,對應線段平行且相等,對應角相等的性質(zhì)。

 。2)能力目標:

  通過探究歸納平移的定義,特征,性質(zhì),積累數(shù)學活動經(jīng)驗,提高學生的科學思維能力。

 。3)情感目標:

  經(jīng)歷觀察,分析,操作,欣賞以及抽象,概括等過程,經(jīng)歷探索圖形平移基本性質(zhì)的過程以及與他人合作交流的過程,進一步發(fā)展空間觀念,增強審美意識。

  下面,為了講清重難點,使學生能達到本節(jié)課設定的教學目標,我再從教法和學法上談談:

  二,教法與學法分析

  教學不只是傳授知識,讓學生單純記憶前人的研究成果,更重要的是激發(fā)學生創(chuàng)造思維,引導學生去探究,發(fā)現(xiàn)結(jié)論的方法。正如先生所說:"教是為了不教"。這樣方能培養(yǎng)出創(chuàng)造性人材,這正是實施創(chuàng)新教育的關(guān)鍵,鑒于教材內(nèi)容特性是探索平移特征,性質(zhì),便于進行生成性學習,故選用探究式教學主動學習的教學策略與方法以及動手實踐,自主探索,合作交流的重要學習方式。引導學生根據(jù)現(xiàn)實生活的經(jīng)歷和體驗及收集到的信息(感性材料)來理解理論知識。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現(xiàn)的機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效地開發(fā)各層次學生的潛在智能,力求使每個學生都能在原有的基礎上得到發(fā)展。同時通過課堂練習和課后作業(yè),啟發(fā)學生從書本知識回到社會實踐,學以致用,落實教學目標。

  另外,我還運用多媒體投影為師生的交流和討論提供了平臺。

  三,教學過程分析

  課堂結(jié)構(gòu)(一)創(chuàng)景引趣(二)探究歸納(三)反饋練習(四)實際運用(五)感情點滴(六)布置作業(yè)六個部分。

  (一)創(chuàng)景引趣

  導語:同學們,你們小時候去過游樂園嗎在游樂園中你們玩過哪些游樂項目在玩這些游樂項目時你們想過什么你們想過它里面蘊含著數(shù)學知識嗎現(xiàn)在,我就展示幾幅畫面,讓大家在重溫美好童年生活的同時,找一找這些項目中,哪些項目的運動形式是一樣的(課件展示),觀看游樂園內(nèi)的一些項目,如:旋轉(zhuǎn)木馬,蕩秋千,小火車,滑梯……,引出第三章內(nèi)容,并進行初步分類,引出本節(jié)課研究內(nèi)容:生活中的平移。)

  (二)探究歸納

  在引入的基礎上,探索新知,(課件展示活動2),觀看幾個運動的圖片,如:手扶電梯上的人,纜車沿索道緩緩上山或下山,傳送帶上的商品,大廈里的電梯,轆轤上的水桶。(小組討論)以上幾種運動現(xiàn)象有什么共同特點鼓勵學生敢于在小組,班上交流自己的見解和探索的規(guī)律,培養(yǎng)學生自主探索,合作交流等良好的學習習慣。在自主探究合作交流中學生的自豪感和成功感得到升華,也增強了學習數(shù)學的自信心和創(chuàng)新能力。通過觀察生活實例,讓學生對平移運動形成直觀上的初步認識。同時,通過兩個問題的提出,幫助學生理解平移運動不會改變物體的大小,形狀以及在平移過程中,物體上的每個部位都沿相同方向移動了相同的距離。通過課件演示以及讓學生親自參與,既使學生理解了平移運動的兩大要素是方向和距離,也增強了學生的動手能力。借助于課件動態(tài)演示,有力啟發(fā)學生,培養(yǎng)學生興趣,使學生思維逐步展開,從而突破了學生學習的難點。為達到本課教學目的奠定了堅實的基礎。課件將圖形的平移運動分解為點,線,面的平移運動,利用不同顏色區(qū)分讓學生能清晰而準確地找出對應點,對應線段及對應角,把平移的性質(zhì)設計成了四個問題,深刻理解平移的性質(zhì),并能全面地對平移的性質(zhì)進行概括。使重點突出,難點突破。

  (三)反饋練習

  學生對所學知識是否掌握了呢為了檢測學生對本課教學目標的達成情況,進一步加強知識的應用訓練,我設計了三組題目。第一組題走進知識平臺;第二組題跨入知識階梯;第三組題攀登知識高峰。由易到難,由簡單到復雜,滿足不同層次學生需求,針對解答情況,采取措施及時彌補和調(diào)整。

 。ㄋ模⿲嶋H運用

  為了活躍課堂氣氛,增強知識的趣味性和綜合性,讓學生舉生活中平移實例。由學生在格紙上平移圖形和動手在電腦上再現(xiàn)平移過程,再次激起學生的探究欲望。通過走進生活的圖片欣賞引出下一節(jié)內(nèi)容,并進一步使學生認識:數(shù)學源于生活,并運用于生活。這就將枯燥的數(shù)學問題賦予有趣的實際背景使內(nèi)容更符合學生的特點,既激發(fā)了學生興趣,又輕松愉悅地應用了本節(jié)課所學知識。使解決數(shù)學問題不再是一種負擔,而是一種享受,激發(fā)學生學習數(shù)學的潛能,讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行包括解釋與應用的過程,體驗數(shù)學來源于生活又服務于生活。

 。ㄎ澹└星辄c滴

  可以從知識獲得途徑,結(jié)論,應用,數(shù)學思想方法等幾個方面展開,在教師引導下由學生自主歸納完成。如"我發(fā)現(xiàn)了什么……我學會了什么……我能解決什么……"等,這樣有利于強化學生對知識的理解和記憶,提高分析和小結(jié)能力。

 。┎贾米鳂I(yè),結(jié)合學生實際水平,準備布置兩部分作業(yè),一部分是必作題體現(xiàn)新課標下落實"學有價值的數(shù)學",達到"人人都能獲得必需數(shù)學",另一部分是選做題讓"不同的人在數(shù)學上得到不同的發(fā)展"。

  四,設計說明

  本節(jié)課以觀看游樂園內(nèi)的一些項目創(chuàng)設了在學生已有的知識經(jīng)驗基礎上的情境,引出第三章內(nèi)容,激起學生的求知欲,再以學生熟悉的幾個事例引出本節(jié)課研究內(nèi)容:生活中的平移。由學生分小組討論,教師通過課件演示,學生在觀察,探索的基礎上歸納出平移的定義,特征,性質(zhì)。這既給學生提供了一個充分從事數(shù)學活動的機會,又體現(xiàn)了學生是數(shù)學學習的主人的理念。學生親身經(jīng)歷了知識的形成過程,不但改變了以往學生死記硬背的學習方式,而且在教學活動中培養(yǎng)了學生自主探索,合作交流等良好的學習習慣。然后利用一組練習題由易到難加以鞏固,最后由學生在格紙上平移圖形和動手在電腦上再現(xiàn)平移過程,再次激起學生的探究欲望。通過走進生活的圖片欣賞引出下一節(jié)內(nèi)容,并進一步使學生認識:數(shù)學源于生活,并運用于生活。這是整節(jié)課的一條暗線,真正體現(xiàn)新課標的理念。本課的教學過程設計為:情境——問題——探究——反思(歸納)——提高,這充分體現(xiàn)了新課程理念數(shù)學課堂教學方式的根本轉(zhuǎn)變。

  以上是我對這節(jié)課的教學設想,懇請各位專家批評指正。

八年級數(shù)學說課稿3

  各位老師,大家早上好!今天我將要為大家講的課題是“平均數(shù)”,下面我將從以下幾個方面進行說明,懇請各位老師和同學批評指正。

  一、教材分析

 。ㄒ唬┍竟(jié)內(nèi)容在全書及章節(jié)的地位

  本節(jié)課是人教版八年級數(shù)學下冊第20章《數(shù)據(jù)的分析》中,第一節(jié)內(nèi)容。主要讓學生認識數(shù)據(jù)統(tǒng)計中基本統(tǒng)計量,是一堂概念性較強的課,也是學生學會分析數(shù)據(jù),作出決策的基礎。本節(jié)課的內(nèi)容與學生生活密切相關(guān),能直接指導學生的生活實踐。

  (二)教學的目標和要求

  根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學生已有的認知結(jié)構(gòu)心理特征,我制定如下教學目標:

  知識目標:理解算術(shù)平均數(shù)、加權(quán)平均數(shù)的含義,掌握算術(shù)平均數(shù)、加權(quán)平均數(shù)的計算方法,明確算術(shù)平均數(shù)、加權(quán)平均數(shù)在數(shù)據(jù)分析中的作用。

  能力目標:會計算一組數(shù)據(jù)的平均數(shù),培養(yǎng)獨立思考,勇于創(chuàng)新,小組協(xié)作的能力。

  情感目標:體驗事物的多面性與學會全面分析問題的必要性,滲透誠實、進取觀念,培養(yǎng)吃苦創(chuàng)新精神。

 。ㄈ┙虒W的重點和難點

  本著課程標準,在吃透教材基礎上,我覺得本節(jié)課的重點是:

  教學重點:算術(shù)平均數(shù)、加權(quán)平均數(shù)的概念以及其計算和確定方法;

  教學難點:平均數(shù)的計算,加權(quán)平均數(shù)的理解和運算。

  二、學生分析

  1、學生與教材

 。1)小學已學過平均數(shù)(2)生活接觸過平均數(shù)

  2、學生的特點(心理正處于一個重要的轉(zhuǎn)折時期)

 。1)他們一方面好奇心強,愛說愛動、爭強好勝、學習的動力多來自興趣激情,收獲多來自“無意注意”。

 。2)另一方面,他們的自覺性差、自控能力弱、情緒起伏較大,動力和效果都不穩(wěn)定。

  下面,為了講清重點、難點,結(jié)合學生的心理特征,使學生能達到本節(jié)設定的教學目標,我再從教法和學法上談談:

  三、教法

  數(shù)學是一門培養(yǎng)和發(fā)展人的思維的重要學科,因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。為了體現(xiàn)以學生發(fā)展為本,遵循學生的認知規(guī)律,體現(xiàn)循序漸進與啟發(fā)式的教學原則,我主要是以問題的方式啟發(fā)學生,以生動有趣的實例吸引與激勵學生;在整個過程中采用情境教學法。同時,注重培養(yǎng)學生閱讀理解能力與小組協(xié)作能力,在教學過程中主要以學生“探究思考”“小組討論”“相互學習”的學習方式而進行。采用了探究式的教學方法,整個探究式學習過程充滿了師生之間的交流和互動,體現(xiàn)了教師是教學活動的組織者、引導者、合作者,學生才是學習的主體。

  四、學法

  數(shù)學作為基礎教育學科之一,轉(zhuǎn)變學生數(shù)學學習方式,不僅有利于提高學生的數(shù)學素養(yǎng),而且有利于促進學生整體學習方式的轉(zhuǎn)變。我采用著重于學生探索研究的啟發(fā)式教學方法,結(jié)合師生共同討論、歸納。在課堂結(jié)構(gòu)上,根據(jù)學生的認知水平,我設計了以下6個成次的學法,①創(chuàng)設情境——引入概念②對比討論——形成概念③例題講解——深化概念④即時訓練—鞏固新知⑤總結(jié)反思——提高認識⑥任務后延——自主探究,它們環(huán)環(huán)相扣,層層深入,從而順利完成教學目標。接下來,我再具體談一談這堂課的教學過程:

  五、教學程序及設想

 。ㄒ唬﹦(chuàng)設情境——引入概念

  長期以來,很多學生為什么對數(shù)學不感興趣,甚至害怕數(shù)學,其中的一個重要因素就是數(shù)學離學生的生活實際太遠。事實上,數(shù)學學習應該與學生的生活融合起來,從學生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現(xiàn)數(shù)學、探究數(shù)學、認識并掌握數(shù)學。

  首先由學生的平均成績、平均年齡引入,復習算術(shù)平均數(shù)的求法。接著,我將以課本136頁的問題一為例,激發(fā)學生的學習興趣。

  (二)對比討論——形成概念

  在學生計算出以上問題的平均數(shù)后,小組討論研究,看誰做的對,學生得出自己的見解后,老師提問,然后引導對比分析以上兩個問題的相同點與不同點,從而討論歸納出加權(quán)平均數(shù)的概念。

 。ㄈ├}講解——深化概念

  接著以所學知識解決一個實際問題,一個很貼近實際的應聘問題,第一問設計很簡單,用算術(shù)平均數(shù)易求,接著出示第二問,給每個數(shù)賦上“權(quán)”,讓學生探討用剛剛學到的知識解決,學生都有一種躍躍欲試的感覺,這樣學生就很容易深化學生對概念的理解。

 。ㄋ模┘磿r訓練——鞏固新知

  為了使學生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時訓練題,通過學生的討論研究,真正掌握算術(shù)平均數(shù)、加權(quán)平均數(shù)的計算方法,在教師的引導下加深了對新知識的鞏固和提高。

 。ㄎ澹┛偨Y(jié)反思——提高認識

  由學生總結(jié)本節(jié)課所學習的主要內(nèi)容:⑴算術(shù)平均數(shù)、加權(quán)平均數(shù)的概念;⑵算術(shù)平均數(shù)、加權(quán)平均數(shù)的計算和確定方法。讓學生通過知識性內(nèi)容的小結(jié),把課堂教學傳授的知識盡快化為學生的素質(zhì);通過數(shù)學思想方法的小結(jié),使學生更深刻地理解數(shù)學思想方法在解題中的地位和應用,并且逐漸培養(yǎng)學生的良好的個性品質(zhì)。

 。┤蝿蘸笱印灾魈骄

  學生經(jīng)過以上五個環(huán)節(jié)的學習,已經(jīng)初步掌握了算術(shù)平均數(shù)、加權(quán)平均數(shù)的計算和確定方法,有待進一步提高認知水平,因此我針對學生素質(zhì)的差異設計了有層次的訓練題,其中包括了必做題和選做題,留給學生課后自主探究,這樣既使學生掌握基礎知識,又使學有余力的學生有進一步發(fā)展的空間和余地,這樣也充分反映了新課改的精神,就是讓不同的學生在數(shù)學上得到不同的發(fā)展。

  以上是我教學的設計過程。在整個過程中我非常強調(diào)的一點是讓學生從已有的生活經(jīng)驗出發(fā),把這些生活中的問題抽象成數(shù)學的模型,并能加以解釋和應用它。

  六、簡述板書設計。

  我將黑板分為了四個板塊,左邊的一塊用以引出概念,中間左邊的一塊我將書寫教學的重點與難點,并用星號加以標注,而剩余兩塊用以向?qū)W生講解例題。

  以上是我說課的所有內(nèi)容,不足之處,希望各位評委老師提出寶貴意見。謝謝!

八年級數(shù)學說課稿4

  一、學生起點分析

  學生已經(jīng)學完三角形的內(nèi)角和,對內(nèi)角和的問題有了一定的認識,加上八年級的學生好奇心、求知欲強,互相評價、互相提問的積極性高、因此對于學習本節(jié)內(nèi)容的知識條件已經(jīng)成熟,學生參加探索活動的熱情已經(jīng)具備,所以把這節(jié)課設計成一節(jié)探索活動課是切實可行的。

  二、教學任務分析

  本節(jié)課是《義務教育課程標準實驗教科書》北師大版八年級上冊第四章第六節(jié)《探索多邊形內(nèi)角和與外角和》的第一課時、本節(jié)內(nèi)容是七年級上冊多邊形相關(guān)知識的延展和升華,并且在探索學習過程中又與三角形相聯(lián)系,從三角形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識為后邊的知識做了鋪墊,聯(lián)系性比較強,特別是教材中設計了現(xiàn)實情境,“想一想”,“議一議”等內(nèi)容,體現(xiàn)了課改的精神、在編寫意圖上,編者強調(diào)使學生經(jīng)歷探索、猜想、歸納等過程,回歸多邊形的幾何特征,而不是硬背公式,發(fā)展了學生的合情推理能力。

  教學目標

  【知識與技能】掌握多邊形內(nèi)角和定理,進一步了解轉(zhuǎn)化的數(shù)學思想

  【過程與方法】經(jīng)歷質(zhì)疑、猜想、歸納等活動,發(fā)展學生的合情推理能力,積累數(shù)學活動的經(jīng)驗,在探索中學會與人合作,學會交流自己的思想和方法。

  【情感態(tài)度與價值觀】讓學生體驗猜想得到證實的成功喜悅和成就感,在解題中感受生活中數(shù)學的存在,體驗數(shù)學充滿著探索和創(chuàng)造。

  教學重難點

  【教學重點】多邊形內(nèi)角和定理的探索和應用。

  【教學難點】多邊形定義的理解。多邊形內(nèi)角和公式的推導。轉(zhuǎn)化的數(shù)學思維方法的滲透。

  三、教學過程設計

  本節(jié)課分成七個環(huán)節(jié):

  第一環(huán)節(jié):創(chuàng)設現(xiàn)實情境,提出問題,引入新課。

  第二環(huán)節(jié):概念形成。

  第三環(huán)節(jié):實驗探究。

  第四環(huán)節(jié):思維升華。

  第五環(huán)節(jié):能力拓展。

  第六環(huán)節(jié):課時小結(jié)。

  第七環(huán)節(jié):布置作業(yè)。

  第一環(huán)節(jié) 創(chuàng)設現(xiàn)實情境,提出問題,引入新課

  1、多媒體展示蜂窩,教師結(jié)合圖片讓學生發(fā)現(xiàn)生活中無處不在的多邊形。

  2、工人師傅鋸桌面:一個四邊形的桌面,用鋸子鋸掉一個角,還剩幾個角?

  目的:

  1、通過現(xiàn)實情境的展示,調(diào)動學生的情緒,激發(fā)起進一步學習的興趣。

  2、把學生的注意力自然的引入研究方向,為課題的研究做鋪墊。

  第二環(huán)節(jié) 概念形成

  1、借助多媒體顯示一多邊形,學生類比三角形的有關(guān)知識對多邊形定義、并表示出相應的元素。

  2、教師再給出嚴格規(guī)范的定義,特別借助學具說明“在平面內(nèi)”的必要性、此外,說明正多邊形的定義以及多邊形可分為凸多邊形和凹多邊形。

  目的:

  1、對于邊角這些能在圖形中識別而又不要求學生掌握的描述性定義,采取學生類比三角形的表示方法來歸納,滲透類比的數(shù)學思想。

  2、借助于自制的直觀教具,說明多邊形定義中“在平面內(nèi)”這一條件,易于學生理解,化解了難點。

  第三環(huán)節(jié) 實驗探究

 。ㄒ运娜诵〗M為單位展開探究活動)

  提出問題:三角形的內(nèi)角和為180°,那么多邊形的內(nèi)角和是多少度呢?從四邊形開始研究。

  活動一:利用四邊形探索四邊形內(nèi)角和

  要求:先獨立思考再小組合作交流完成)

 。◣熝惨,了解學生探索進程并適當點撥)

 。ㄉ伎己蠼涣,把不同的方案在紙上完成)

八年級數(shù)學說課稿5

  一、說教材

  1。本課在在教材中的地位和作用 《分式的加減》這節(jié)課是代數(shù)運算的基礎,分兩課時完成,我所設計的是第一課時的教學,主要內(nèi)容是同 分母的分式相加減及簡單的異分母的分式相加減。學生已掌握了分數(shù)的加減法運算,同時也學習過分式的基本性質(zhì), 這為本節(jié)課的學習打下了基礎,而掌握好本節(jié)課的知識,將為《分式的加減》第二課時以及《分式方程》的學習做好 必備的知識儲備。

  2。教學目標

  ①知識與技能:會進行簡單的分式加減運算,具有一定的代數(shù)化歸能力,能解決一些簡單的實際問題;

 、谶^程與方法:使學生經(jīng)歷探索分式加減運算法則的過程,理解其算理;

  3。情感態(tài)度與價值觀:培養(yǎng)學生大膽猜想,積極探究的學習態(tài)度,發(fā)展學生有條理思考及代數(shù)表達能力,體會其價值。

 。3)重點、難點

 、僦攸c:掌握分式的加減運算

 、陔y點:異分母的分式加減運算及簡單的分式混合運算

  二、說教法

  本課我主要以“創(chuàng)設情景——引導探究——類比歸納——拓展延伸”為主線,啟發(fā)和引導貫穿教學始終, 通過師生共同研究探討,體現(xiàn)以教為主導、學為主體、練為主線的教學過程。

  三、說學法

  根據(jù)學生的認知水平,我設計了“自主探索、合作交流、猜想歸納和鞏固提高”四個層次的學法。 四、說教學過程

  (一)創(chuàng)設情境,導入新知

  第一環(huán)節(jié):提出問題

  問題 1: 甲工程隊完成一項工程需 n 天,乙工程隊要比甲隊多用 3 天才能完成這項工程,兩隊共同工作一天完 成這項工程的幾分之幾?

  問題 2:20xx 年,20xx 年,20xx 年某地的森林面積(單位:公頃)分別是 S1,S2,S3,20xx 年與 20xx 年相比, 森林面積增長率提高了多少?

  老師活動:組織學生分組討論,再共同研究 學生活動:小組討論、探究、發(fā)言 設計意圖:通過創(chuàng)設這兩個問題情境,引入分式的加減運算,既體現(xiàn)了分式加減運算的意義,又讓學生經(jīng) 歷從實際問題建立分式模型的過程,并在此基礎上激發(fā)學生尋求解決問題的方法。

  第二環(huán)節(jié):同分母分式相加減

  想一想:(1)同分母的分數(shù)如何加減?如:2/3+5/3=(2+5)/3,:2/3—5/3=(2—5)/3; (2)思考:類比分數(shù)的加減法則,你能歸納出分式的加減法則嗎? 老師活動:鼓勵學生通過類比、探究并大膽猜想分式的加減運算法則 學生活動:分組進行討論、交流,并多舉類似例子進行類比,而后,小組發(fā)表意見,說明自己的推測。 在學生通過交流得到猜想的基礎上出示做一做: 做一做:(1)1/a+2/a=_____________ 2 (2)x /(x—2) – 4/(x—2)=___________ (3)(x+2)/(x+1) –(x—1)/(x+1)+(x—3)/(x+1)=___________ 教師通過讓學生練習“做一做”的題目,加以驗證和領悟,法則的形成打下基礎,并導出分式加減運算法 則:同分母的分式相加減,分母不變,把分子相加減 老師活動:引入習題“做一做”,適當糾正學生的語言,并板書法則 學生活動:通過個體練習,領悟規(guī)律,再小組交流,形成法則 設計意圖:引導學生通過類比分數(shù)運算方法,大膽猜想分式的加減法則

  (二)主動探究,拓展延伸

  第三環(huán)節(jié):異分母的分式相加減 想一想:(1)異分母的分數(shù)如何相加減?如:1/2+2/3=?:1/2—2/3=?。 (2)你認為異分母的分式應該如何加減?如:1/a+2/b=? 老師活動:提出問題,引導、啟發(fā)學生通過異分母分數(shù)相加減的方法類比得到異分母分式相加減的方法 學生活動:參與交流、討論、歸納異分母分式加減的方法 設計意圖:進一步鍛煉學生的類比思想;同時通過討論解決分式的通分,使學生掌握異分母分式轉(zhuǎn)化為同 分母分式的方法,培養(yǎng)學生的轉(zhuǎn)化思想,為下節(jié)課做好準備

  (三)例題教學

  第四環(huán)節(jié):解決問題

 。1)回到開始提出的兩個問題: s3 ? s 2 s 2 ? s1 1 1 ? 問題一: ( ? ) s2 s1 n n ?3 問題二:

 。2)例題 1:計算(課本 P81 頁) 老師活動:出示習題,巡視、引導、糾正 學生活動:自主完成

  設計意圖:進一步提高學生對異分母分式的加減運算能力

  (四)隨堂練習

  第五環(huán)節(jié):鞏固深化

  老師活動:巡視、引導 學生活動:個體練習、板演 設計意圖:檢驗學生是否掌握分式的加減運算方法 (五)課堂小結(jié) 第六環(huán)節(jié):提高認識 老師活動:本節(jié)課我們學了哪些知識?在運用過程中需要注意些什么?你有什么收獲? 學生活動

  歸納總結(jié)

 。1)同分母分式加減法則

  (2)簡單異分母分式的加減 設計意圖:鍛煉學生及時總結(jié)的良好習慣和歸納能力 (六)作業(yè)布置 第七環(huán)節(jié):反思提煉 課本 P27 第 1、2 題 五、板書設計

八年級數(shù)學說課稿6

  一、教材分析

  1、教材的地位及作用

  “分式的基本性質(zhì)”是人教版八年級上冊第十一章第一節(jié)“分式”的重點內(nèi)容之一,它是后面分式變形、通分、約分及四則運算的理論基礎,掌握本節(jié)內(nèi)容對于學好本章及以后學習方程、函數(shù)等問題具有關(guān)鍵作用。

  2、教學重點、難點分析:

  教學重點:理解并掌握分式的基本性質(zhì)

  教學難點:靈活運用分式的基本性質(zhì)進行分式化簡、變形

  3、教材的處理

  學習是學生主動構(gòu)建知識的過程。學生不是簡單被動的接受信息,而是對外部信息進行主動的選擇、加工和處理,從而獲得知識的意義。學習的過程是自我生成的過程,是由內(nèi)向外的生長,其基礎是學生原有知識與經(jīng)驗。本節(jié)課中,學生原有的知識是分數(shù)的基本性質(zhì),因此我首先引導學生通過分數(shù)的基本性質(zhì),這就激活了學生原有的知識,然后引導學生通過分數(shù)的基本性質(zhì)用類比的方法得出分式的基本性質(zhì)。讓學生自我構(gòu)建新知識。通過例題的講解,讓學生初步理解“性質(zhì)”的運用,再通過不同類型的練習,使其掌握“性質(zhì)”的運用。最后引導學生對本節(jié)課進行小結(jié),使學生的知識結(jié)構(gòu)更合理、更完善。

  二、目標分析:

  數(shù)學教學是數(shù)學活動的教學,是師生之間、學生之間交往互動與共同發(fā)展的過程。教學的目的就是應從實際出發(fā),創(chuàng)設有助于學生自主學習的問題情境,引導學生通過思考、探索、交流獲得知識,形成技能,發(fā)展思維,學會學習,使學生生動活潑地、主動地、富有個性的學習,促進學生全面、持續(xù)、和諧地發(fā)展。為此,我從知識技能、數(shù)學思考解決問題、情感態(tài)度四個方面確定了教學目標:

  1、知識技能:

  1)了解分式的基本性質(zhì)

  2)能靈活運用分式的基本性質(zhì)進行分式變形

  2、數(shù)學思考:通過類比分數(shù)的基本性質(zhì),探索分式的基本性質(zhì),初步掌握類比的思想方法。

  3、解決問題:通過探索分數(shù)的基本性質(zhì),積累數(shù)學活動的經(jīng)驗。

  4、情感態(tài)度:通過研究解決問題的過程,培養(yǎng)學生合作交流意識與探索精神。

  三、教法分析

  1、教學方法

  數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。在新課程理念下,獲得數(shù)學知識的過程比獲得知識更為重要。基于本節(jié)課的特點,課堂教學采用了“問題—觀察—思考—提高”的步驟,使學生初步體驗到數(shù)學是一個充滿著觀察、思考、歸納、類比和猜測的探索過程。

  2、學法指導

  現(xiàn)代新教育理念認為,學習數(shù)學不應只是單調(diào)刻板,簡單模仿,機械背誦與操練,而應該采用設置現(xiàn)實問題情境,有意義富有挑戰(zhàn)性的學習內(nèi)容來引發(fā)學習者的興趣。,本節(jié)課采用學生小組合作,討論交流,觀察發(fā)現(xiàn),師生互動的學習方式。學生通過小組合作學會主動探究,主動總結(jié),主動提高,突出學生是學習主體,他們在感知識知識的過程中無疑提高了探索、發(fā)現(xiàn)、實踐、總結(jié)的能力。

  3、教學手段

  我所采用的教學手段是多媒體輔助教學法。

  四、程序分析

  活動1創(chuàng)設情境,引入課題

  教師提出問題,下列分數(shù)是否相等?可以進行變形的依據(jù)是什么?需要注意的是什么?類比分數(shù)的基本性質(zhì),你能猜想出分工有什么性質(zhì)嗎?學生思考、交流,回答問題。

  在活動中教師要關(guān)注:

 。1)學生對學過的知識是否掌握得較好;

 。2)學生對新知識的探索是否有深厚的興趣。

  設計意圖:通過具體例子,引導學生回憶分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。這樣安排,首先激活了學生原有的知識,為學習分式的基本性質(zhì)做好鋪墊。體現(xiàn)了學生的學習是在原有知識上自我生成的過程。

  活動2類比聯(lián)想,探究交流

  教師提出問題:如何用語言和式子表示分式的基本性質(zhì)?學生獨立思考、分組討論、全班交流。

  設計意圖:教師引導學生用語言和式子表示分式的基本性質(zhì),體現(xiàn)了學生的學習是在原有知識上自我生成的過程。這樣安排,學生的知識不是從老師那里直接復制或灌輸?shù)筋^腦中來的,而是讓學生自己去類比發(fā)現(xiàn)、過程讓學生自己去感受、結(jié)論讓學生自己去總結(jié),實現(xiàn)了學生主動參與、探究新知的目的。

  活動3例題分析運用新知

  教師提出問題進行分式變形。學生先獨立思考問題,然后分小組討論。教師參與并指導學生的數(shù)學活動,鼓勵學生勇于探索、實踐,靈活運用分式基本性質(zhì)進行分式的恒等變形。

  在活動中教師要關(guān)注:

 。1)學生能否緊扣“性質(zhì)”進行分析思考;

  (2)學生能否逐步領會分式的恒等變形依據(jù)。

 。3)學生是否能認真聽取他人的意見。

  活動4練習鞏固拓展訓練

  教師出示問題訓練單。學生先獨立思考完成,并安排三名同學板演。教師巡視,注意對學習有困難的學生進行個別輔導。

  在活動中教師要關(guān)注:

 。1)大部分學生能否準確、熟練完成任務;

 。2)學生能否用數(shù)學語言表述發(fā)現(xiàn)的規(guī)律;

 。3)學生在運算中表現(xiàn)出來的情感與態(tài)度是否積極。

  設計意圖:通過思考問題,鼓勵學生在獨立思考的基礎上,積極地參與到對數(shù)學問題的討論中來,勇于發(fā)表自己的觀點,善于理解他人的見解,在交流中獲益。第二個問題指明了分式的變號法則。

  活動5 小結(jié)評價布置作業(yè)

  學生思考在教師的引導下整理知識、理順思維。在活動中教師要關(guān)注:

 。1)學生對本節(jié)課的學習內(nèi)容是否理解;

 。2)學生能否從獲取新知的過程中領悟到其中的數(shù)學方法。

  設計意圖:

  學生對學習情況進行反思,主要包括:對自己的思考過程進行反思;對學習活動涉及的思想方法進行反思;對解題思路、過程和語言表述進行反思;等等。幫助學生獲得成功的體驗和失敗的感受,積累學習經(jīng)驗。對所學內(nèi)容進一步系統(tǒng)化,使學生的知識結(jié)構(gòu)更合理,更完善。

八年級數(shù)學說課稿7

  一、教材分析

  “兩角差的余弦公式”是課標教材人教版必修4第三章《三角恒等變換》第一節(jié)第一課時的內(nèi)容。學生已經(jīng)學習了三角函數(shù)的基本關(guān)系和誘導公式以及平面向量,在此基礎上,本章將學習任意兩個角和、差的三角函數(shù)式的變換。作為本章的第一節(jié)課,重點是引導學生通過合作、交流,探索兩角差的余弦公式,為后續(xù)簡單的恒等變換的學習打好基礎。由于兩角差的余弦公式推導方法有很多,書本上出現(xiàn)兩種證明方法——三角函數(shù)線法和向量法。課本中豐富的生活實例為學生用數(shù)學的眼光看待生活,體驗用數(shù)學知識解決實際問題,有助于增強學生的數(shù)學應用意識。

  二、學情分析

  學生在第一章已經(jīng)學習了三角函數(shù)的基本關(guān)系和誘導公式以及平面向量,但只對有特殊關(guān)系的兩個角的三角函數(shù)關(guān)系通過誘導公式變換有一定的了解。對任意兩角和、差的三角函數(shù)知之甚少。本課時面對的學生是高一年級的學生,學生對探索未知世界有主動意識,對新知識充滿探求的渴望,但應用已有知識解決問題的能力還處在初期,需進一步提高。

  三、教法學法分析

  (一)、說教法

  基于新課標的理念中“學生主體性和教師主導性”的原則以及本班學生的實際情況,我采取如下教學方法:

  1、通過學生熟悉的實際生活問題引入課題,為公式學習創(chuàng)設情境,拉近數(shù)學與現(xiàn)實的距離,激發(fā)學生的求知欲,調(diào)動學生的主體參與的積極性。

  2、突破教材,引導學生利用較為簡潔的兩種方法——兩點間距離公式和向量法,在鼓勵學生主體參與、樂于探究、勤于思考公式推導的同時,充分發(fā)揮教師的主導作用。

  3、采用投影儀、多媒體等現(xiàn)代教學手段,增強教學簡易性和直觀性。

  4、通過有梯度的練習、變式訓練、分層作業(yè),學生對知識掌握逐步提高。

  (二)、說學法

  從學生已有的認知水平、認知能力出發(fā),經(jīng)過觀察分析、自主探究、推導證明、歸納總結(jié)等環(huán)節(jié),理解公式的推導過程,通過有梯度的練習、變式訓練、分層作業(yè),學生逐步提高對知識掌握。

  四、教學目標

  (根據(jù)新課程標準和本節(jié)知識的特點,以及本班學生的實際情況,確立以下教學目標)

  (一)、知識目標

  1、理解兩角差的余弦公式的推導過程,并會利用兩角差的余弦公式解決簡單問題。

  (二)、能力目標

  通過利用同角三角函數(shù)變換及向量推導兩角差的余弦公式,學生體會利用已有知識解決問題的一般方法,提高學生分析問題和解決問題的能力。

  (三)、情感目標

  使學生經(jīng)歷數(shù)學知識的發(fā)現(xiàn)、探索和證明的過程,體驗成功探索新知的樂趣,激發(fā)學生提出問題的意識以及努力分析問題、解決問題的激情。

  五、教學重難點

  (由于本節(jié)課主要內(nèi)容是公式的推導,所以教學重難點如下:)

  教學重點:兩角差的余弦公式的推導過程及簡單應用;

  教學難點:兩角差的余弦公式的推導。

  六、教學流程

  七、教學過程

  (一)創(chuàng)設情境,導入新課

  問題1:任意角的三角函數(shù)是如何定義的?

  舊知,角的終邊與單位圓交于是兩角差的余弦公式推導的基礎)

 。◤膶嶋H問題出發(fā),引導學生思考,從任意角的三角函數(shù)定義考慮能否求出,,從而引入本節(jié)課的課題----兩角差的余弦公式)

  問題2:我們在初中時就知道一些特殊角的三角函數(shù)值。那么大家驗證一下,=嗎?,下面我們就一起探究兩角差的余弦公式。

 。ㄒ龑W生利用特殊角檢驗,產(chǎn)生認知沖突,從而激發(fā)學生探究兩角差的余弦公式的興趣。)

  (二)探索公式,建構(gòu)新知

 。ㄓ捎趦山遣畹挠嘞夜酵茖Х椒ㄓ泻芏,本節(jié)課突破教材,引導學生利用較為簡潔的兩種方法——兩點間距離公式和向量法,書本上出現(xiàn)三角函數(shù)線法留給學生參照書本課下探究。公式得出后,生成點的動畫,讓學生進一步感知兩角差的余弦公式對任意角均成立,并啟發(fā)學生觀察公式的特征。)

  方法一(兩點間距離公式):如圖,角的終邊與單位圓交于;角的終邊與單位圓交于;角的終邊與單位圓交于;則:

  所以:。

  方法二(向量法):在平面直角坐標系xOy內(nèi)作單位圓O,,它們的終邊與單位圓O的交點分別為A,B,則由向量數(shù)量積的坐標表示,有:向量的夾角就是,由數(shù)量積的定義,有于是

  由于我們前面的推導均是在,且的條件下進行的,因此(1)式還不具備一般性。

  若(1)式是否依然成立呢?

  當時,設與的夾角為,則

  另一方面于是所以

  也有

  方法三(學生自主探究三角函數(shù)線法)

  (三)例題講解,知識遷移

  例1化簡求值:

 。ㄍㄟ^例1中有梯度的練習,學生能夠?qū)崿F(xiàn)對公式的正向和逆向的簡單應用.求同時求出引例中橋的長度,培養(yǎng)學生應用數(shù)學的能力)

  (變式的教學中引導學生使用兩種方法:

  方法一:從公式本身思考

  方法二:引導學生發(fā)現(xiàn)

  提高學生應用知識的能力和邏輯思維能力)

  (四)開放小結(jié),歸納提升

  小結(jié):本節(jié)課你學到了那些知識,有什么樣的心得體會?

  口訣:余余正正異相連

 。ㄒ龑W生從公式內(nèi)容和推導方法兩個方面進行小結(jié),不僅使學生對本節(jié)課的知識結(jié)構(gòu)有一個清晰的認識,而且對所用到的數(shù)學方法和涉及的數(shù)學思想也得以領會,這樣既可以使學生完成知識建構(gòu),又可以培養(yǎng)其能力。開放式小結(jié),啟發(fā)靈活,以問促思,能夠較全面的幫助學生歸納知識,形成技能。)

  (五)分層作業(yè),鞏固提高(必做題)P127,練習1,3,4

  (選做題同學可以思考:能否用直角三角形中的三角函數(shù)關(guān)系證明兩角差的余弦公式?課后作業(yè)設置有必做題和選做題,使不同程度的學生都得到能力的提升,符合因材施教的教學規(guī)律)

  八、 板書設計

  九、教后反思

八年級數(shù)學說課稿8

  一、教材分析

  說課內(nèi)容:

  《整式的乘除與因式分解》的《完全平方公式》。

  教材的地位和作用:

  完全平方公式是初中數(shù)學中的重要公式,在整個中學數(shù)學中有著廣泛的應用,重要的數(shù)學方法“配方法”的基礎也是依據(jù)完全平方公式的。而且它在整式乘法,因式分解,分式運算及其它代數(shù)式的變形中起作十分重要的作用。

  本節(jié)內(nèi)容共安排兩個課時,這次說課是其中第一個課時。完全平方公式這一教學內(nèi)容是學生在已經(jīng)掌握單項式乘法、多項式乘法及平方差公式基礎上的拓展,教材從具體到抽象,由直觀圖形引導學生觀察、實驗、猜測、進而論證,最后建立數(shù)學模型,逐步培養(yǎng)學生的邏輯推理能力和建模思想。

  教學目標和要求:

  由課標要求以及學生的情況我將三維目標定義為以下三點:

  知識與技能目標:了解公式的幾何背景,理解并掌握公式的結(jié)構(gòu)特征,能利用公式進行計算。

  過程與方法目標:在學習的過程中使學生體會數(shù)、形結(jié)合的優(yōu)勢,進一步發(fā)展符號感和推理能力,培養(yǎng)學生數(shù)學建模的思想。

  情感與態(tài)度目標:體驗數(shù)學活動充滿著探索性和創(chuàng)造性,并在數(shù)學活動中獲得成功的體驗與喜悅,樹立自信心。

  教學的重點與難點:

  根據(jù)對學生學習過程分析及課標要求我把重點定為:完全平方公式的結(jié)構(gòu)特點及公式的直接運用。而難點應為完全平方公式的應用以及對公式中字母a、b的廣泛含義的理解與正確應用。在教學過程中多處留有空白點以供學生獨立研究思考。

  二、教法與學法

 。1)多媒體輔助教學,將知識形象化、生動化,激發(fā)學生的興趣。

  (2)教學中逐步設置疑問,引導學生動手、動腦、動口,積極參與知識全過程。

 。3)由易到難安排例題、練習,符合八年級學生的認知結(jié)構(gòu)特點。

 。4)課堂中,對學生激勵為主,表揚為輔,樹立其學習的自信心。

  三、教學過程

  教師活動學生活動設計意圖

  一、創(chuàng)設情景,推導公式

  計算

  1、想一想(電腦演示)

  一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種,(如圖所示)

 、拧⒎謩e寫出每塊實驗田的面積;

 、啤⒂貌煌男问奖硎緦嶒炋锏目偯娣e,并進行比較,你發(fā)現(xiàn)了什么?

  2、算一算

 、佟=?你能用多項式乘法法則說明理由嗎?(引導學生說理)

  3、做一做

  你能利用面積知識,仿照課本以及演示的動畫,自己給出的示意圖嗎?

  二、自主探究,合作交流

  板書公式:

 、佗1、問題:

  ①這兩個公式有何相同點與不同點?

 、谀隳苡米约旱恼Z言敘述這兩個公式嗎

八年級數(shù)學說課稿9

尊敬的各位領導,各位老師:

  大家好!今天我說課的內(nèi)容是初中八年級數(shù)學人教版教材第十八章第一節(jié)《勾股定理》(第一課時),下面我分五部分來匯報我這節(jié)課的教學設計,這就是"教材分析"、"學情分析"、"教法選擇"、"學法指導"、"教學過程"。

  一、教材分析

  (一) 教材地位和作用

  勾股定理是幾何中的重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系,將幾何圖形與數(shù)字聯(lián)系起來。它在數(shù)學的發(fā)展中起過重要的作用,在生產(chǎn)生活中有著廣泛的應用。而且它在其它自然學科中也常常用到。因此,這節(jié)課有著舉足輕重的地位。

 。ǘ┙虒W目標

  根據(jù)新課程標準的要求和本課的特點,結(jié)合學生的實際情況,我確定了本課的教學目標:

  1、知識與技能方面

  了解勾股定理的文化背景,經(jīng)歷探索勾股定理的過程,掌握直角三角形三邊之間的數(shù)量關(guān)系, 并能簡單應用。

  2、過程與方法方面

  經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,能感受到數(shù)學思考過程的條理性,發(fā)展數(shù)學的說理和簡單的推理的意識,和語言表達的能力,并體會數(shù)形結(jié)合和特殊到一般的思想方法。

  3、情感態(tài)度與價值觀方面

  (1)通過了解勾股定理的歷史,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發(fā)奮學習。

 。2) 通過研究一系列富有探 究性的問題,培養(yǎng)學生與他人交流、合作的意識和品質(zhì)。

 。ㄈ┙虒W重點難點

  教學重點:掌握勾股定理,并能用它來解決一些簡單的問題。

  教學難點:勾股定理的證明。

  二、學情分析

  我們班日常經(jīng)常使用多媒體輔助教學。經(jīng)過一年多的幾何學習,學生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學生解題思維能力比較高,能夠正確 歸納所學知識,通過學習小組討論交流,能夠形成解決問題的思路。 現(xiàn)在的學生已經(jīng)厭倦教師單獨的說教方式,希望教師設計便于他們進行觀察的幾何環(huán)境,給他們自己探索、發(fā)表自己見解和表現(xiàn)自己才華的機會;更希望教師滿足他 們的創(chuàng)造愿望。

  三、教法選擇

  根據(jù)本節(jié)課的教學目標、教學內(nèi)容以及學生的認知特點,結(jié)合我校的“當堂達標”教學模式,我在教法上采用引導發(fā)現(xiàn)法為主,并以分析法、討論法相結(jié)合。設計" 觀察——討論—歸納"的教學方法,意在幫助學生通過自己動手實驗和直觀情景觀察,從實踐中獲取知識,并通過討論來深化對知識的理解。本節(jié)課采用了多媒體輔 助教學,能夠直觀、生動的反應圖形,增加課堂的容量,同時有利于突出重點、分散難點,增強教學形象性,更好的提高課堂效率。

  四、學法指導:

  為了充分體現(xiàn)《新課標》的要求,培養(yǎng)學生的觀察分析能力,邏輯思維能力,積累豐富的數(shù)學學習經(jīng)驗,這節(jié)課主要采用觀察分析,自主探索與合作交流的學習方 法,使學生積極參與教學過程。在教學過程中展開思維,培養(yǎng)學生提出問題、分析問題、解決問題的能力,進一步體會觀察、類比、分析、從特殊到一般等數(shù)學思 想。借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主人。

  五、教學過程

  根據(jù)《新課標》中"要引導學生投入到探索與交流的學習活動中"的教學要求,本節(jié)課的教學過程我是這樣設計的:

 。ㄒ唬﹦(chuàng)設情境,引入新課

  一個設計合理的情境引入可以說在一定程度上決定著學生能否帶著興趣積極投入到本節(jié)課的學習中。為了體現(xiàn)數(shù)學源于生活,數(shù)學是從人的需要中產(chǎn)生的,學習數(shù)學的目的是為了用數(shù)學解決實際問題。我設計了以下題目:

  星期日老師帶領全班同學去某山風景區(qū)游玩,同學們看到山勢險峻,查看景區(qū)示意圖得知:這座山主峰高約為900米,如圖:為了方便游人,此景區(qū)從主峰A處向地面B處架了一條纜車線路,已知山底端C處與地面B處相距1200米,

  ∠ACB=90° ,你能用所學知識算出纜車路線AB長應為多少?

  答案是不能的。然后教師指出,通過這節(jié)課的學習,問題將迎刃而解。

  設計意圖:以趣味性題目引入。從而設置懸念,激發(fā)學生的學習興趣。 教師引導學生把實際問題轉(zhuǎn)化為數(shù)學問題,這其中滲透了一種數(shù)學思想,對于學生也是一種挑戰(zhàn),能激發(fā)學生探究的欲望,自然引出下面的環(huán)節(jié)。

  緊接著出示本節(jié)課的學習目標:

  1、了解勾股定理的文化背景,體驗勾股定理的探索過程。

  2、掌握勾股定理的內(nèi)容,并會簡單應用。

 。ǘ┕垂啥ɡ淼奶剿

  1、猜想結(jié)論

 。1)探究一:等腰直角三角形三邊關(guān)系。

  由課本64頁畢達哥拉斯的故事,探究等腰直角三角形三邊關(guān)系。結(jié)合課件中格點圖形的面積,學生自主探究,通過計算、討論、總結(jié),得出結(jié)論:等腰直角三角形的斜邊的平方等于兩直角邊的平方和。

  在此過程中,給學生充分的時間、觀察、比較、交流,最后通過活動讓學生用語言概括總結(jié)。

  提問:等腰直角三角形有這樣的性質(zhì),其他的直角三角形也有這樣的性質(zhì)嗎?

 。2、)探究二:一般的直角三角形三邊關(guān)系。

  在課件中的格點圖形中,利用面積,再次探究直角三角形的三邊關(guān)系。學生自主探究,通過計算、討論、總結(jié),得出結(jié)論:在直角三角形中,兩直角邊的平方和等于斜邊的平方。

  設 計意圖:組織學生進行討論,在此基礎上教師引導學生從三邊的平方有何大小關(guān)系入手進行觀察。教師在多媒體課件上直觀地演示。通過學生自己探索、討論,由學 生自己得出結(jié)論。這樣,讓學生參與定理的再發(fā)現(xiàn)過程,他們通過自己觀察、計算所得出的定理,在心理產(chǎn)生自豪感,從而增強學生的學習數(shù)學的自信心。

  2、證明猜想

  目前世界上證明該勾股定理的方法有很多種,而我國古代數(shù)學家利用拼接、割補圖形,計算面積的思路提供了很多種證明方法,下面我們通過古人趙爽的方法進行證 明。學生分組活動,根據(jù)圖形的面積進行計算,推導出勾股定理的一般形式:a + b = c。即直角三角形兩直角邊的平方和等于斜邊的平方、

  設計意圖:通過利用多媒體課件的演示,更直觀、形象的向?qū)W生介紹用拼接、割補圖形,計算面積的證明方法,使學生認識到證明的必要性、結(jié)論的確定性,感受到前人的偉大和智慧。

  3、簡要介紹勾股定理命名的由來

  我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學家商高就提出,將一根直尺折成一個直角,如果勾等于三,股等于四,那么弦就等于五,即 “勾三、股四、弦五”,它被記載于我國古代著名的數(shù)學著作《周髀算經(jīng)》中、我國稱這個結(jié)論為"勾股定理",西方畢達哥拉斯于公元前五世紀發(fā)現(xiàn)了勾股定理, 但他比商高晚出生五百多年。

  設計意圖:對比以上事實對學生進行愛國主義教育,激勵他們奮發(fā)向上。

 。ㄈ┕垂啥ɡ淼膽

  1、利用勾股定理,解決引入中的問題。體會數(shù)學在實際生活中的應用。

  2、教學例1:課本66頁探究1

  師生討論、分析: 木板的寬2、2米大于1米,所以橫著不能從門框內(nèi)通過.

  木板的寬2、2米大于2米,所以豎著不能從門框內(nèi)通過.

  因為對角線AC的長度最大,所以只能試試斜著 能否通過.

  從而將實際問題轉(zhuǎn)化為數(shù)學問題.

  提示:

 。1)在圖中構(gòu)造出一個直角三角形。(連接AC)

 。2)知道直角△ABC的那條邊?

 。3)知道直角三角形兩條邊長求第三邊用什么方法呢?

  設計意圖:此題是將實際為題轉(zhuǎn)化為數(shù)學問題,從中抽象出Rt△ABC,并求出斜邊A C的長。本例意在滲透實際問題和勾股定理的知識聯(lián)系。通過系列問題的設置和解決,旨在降低難度,分散難點,使難點予以突破,讓學生掌握勾股定理在具體問題中的應用,使學生獲得新知,體驗成功,從而增加學習興趣。

  (四)、課堂練習 習題18、1 1、5。 學生板演,師生點評。

  設計意圖:通過練習使學生加深對勾股定理的理解,讓學生比較練習題和例題中條件的異同,進一步讓學生理解勾股定理的運用。

 。ㄎ澹┱n堂小結(jié)

  對學生提問:"通過這節(jié)課的學習有什么收獲?"

  學生同桌間暢談自己的學習感受和體會,并請個別學生發(fā)言。

  設計意圖:讓學生自己小結(jié),活躍了氣氛,做到全員參與,理清了知識脈絡,強化了重點,培養(yǎng)了學生口頭表達能力。

 。┻_標訓練與反饋

  設計意圖:必做題較為簡單,要求全體學生完成;選作題有一點的難度,基礎較好的學生能夠完成,體現(xiàn)分層教學。

  以上內(nèi)容,我僅從"說教材","說學情"、"說教法"、"說學法"、"說教學過程"五個方面來說明這堂課"教什么"和"怎么教",也闡述了"為什么這樣 教",讓學生人人參與,注重對學生活動的評價, 探索過程中,會為學生創(chuàng)設一個和諧、寬松的情境。希望得到各位專家領導的指導與指正,謝謝!

八年級數(shù)學說課稿10

  一、設計思想:

  數(shù)學來源于生活,數(shù)學教學應走進生活,生活也應走進數(shù)學,數(shù)學與生活的結(jié)合,會使問題變得具體、生動,學生就會產(chǎn)生親近感、探究欲,從而誘發(fā)內(nèi)在學習潛能,主動動手、動口、動腦。因此,在教學中,我們應自覺地把生活作為課堂,讓數(shù)學回歸生活,服務生活。培養(yǎng)學生的動手能力和創(chuàng)新能力,豐富和發(fā)展學生的數(shù)學活動經(jīng)歷,并使學生充分體會到數(shù)學之趣、數(shù)學之用、數(shù)學之美。

  處理好教與學的關(guān)系。教師

  既要做到精講精練,又要敢于放手引導學生參與嘗試和討論,展開思維活動 。

  根據(jù)新教材留給學生一定的思維空間的特點,教師要鼓勵學生自己動腦參與探索,讓學生有發(fā)表意見的機會,絕對不能包辦代替,使學生不僅能學會,而且能會學。充分發(fā)揮網(wǎng)絡在課堂教學中的優(yōu)勢,力爭促進學生學習方式的轉(zhuǎn)變,由被動聽講式學習轉(zhuǎn)變?yōu)榉e極主動的探索發(fā)現(xiàn)式學習。數(shù)學問題生活化,主導主體相結(jié)合,發(fā)揮媒體技術(shù)優(yōu)勢,探究練習相結(jié)合,符合《課標》精神。

  網(wǎng)絡環(huán)境下代數(shù)課的教學模式:設置情境-提出問題-自主探究-合作交流-反思評價-鞏固練習-總結(jié)提高

  二、背景分析:

 。ㄒ唬⿲W情分析:

  內(nèi)容是義務教育課程標準實驗教科書(人民教育出版社)數(shù)學八年級下冊第十六章:《分式》

  學生是本校初二實驗班的學生,參加北師大“基礎教育跨越式發(fā)展”課題實驗一年半,學生基礎知識較扎實,具有一定探索解決問題的能力,電腦使用水平較熟練,對于網(wǎng)絡環(huán)境下的學習模式已適應。

  本節(jié)課實施網(wǎng)絡環(huán)境下教學,采用自學導讀式教學模式。學生喜歡上網(wǎng)絡數(shù)學課,學習數(shù)學的興趣較濃。

 。ǘ﹥(nèi)容分析:

  本節(jié)內(nèi)容是在學生掌握了一元一次方程的解法和分式四則運算的基礎上進行的,為后面學習可化為一元二次方程的分式方程打下基礎。

  通過經(jīng)歷實際問題→列分式方程→探究解分式方程的過程,體會分式方程是一種有效描述現(xiàn)實世界的模型,發(fā)展學生分析問題解決問題的能力,培養(yǎng)應用意識,滲透類比轉(zhuǎn)化思想。

 。ㄈ┙虒W方式:自學導讀—同伴互助—精講精練

 。ㄋ模┙虒W媒體:Midea---Class純軟多媒體教學網(wǎng) 幾何畫板

  三、教學目標:

  知識技能:了解分式方程定義,理解解分式方程的一般解法和分式方程可能產(chǎn)生增根的原因,掌握解分式方程驗根的方法。

  過程方法:通過經(jīng)歷實際問題→列分式方程→探究解分式方程的過程,體會分式方程是一種有效描述現(xiàn)實世界的模型,發(fā)展學生分析問題解決問題的能力,培養(yǎng)應用意識,滲透轉(zhuǎn)化思想。

  情感態(tài)度:強化用數(shù)學的意識,增進同學之間的配合,體驗在數(shù)學活動中運用知識解決問題的'成功體驗,樹立學好數(shù)學的自信心。

  教學重點:解分式方程的基本思路和解法。

  教學難點:理解分式方程可能產(chǎn)生增根的原因。

  設計說明:情感、態(tài)度、價值觀目標不應該是一節(jié)課或一學期的教學目標,它應該貫穿于初中數(shù)學教學的每一堂課,它應該與具體的數(shù)學知識聯(lián)系在一起,才能讓教師

  好把握,學生好掌握,否則就是空中樓閣,霧里看花,水中望月。

  四、板書設計:

  a不是分式方程的解

 。ǘ⿲W習方法:類比與轉(zhuǎn)化

  教學思考:伴隨教學過程的進行,不失時機的,恰到好處的書寫板書,要比用多媒體呈現(xiàn)出來效果好,絕不能用媒體技術(shù)替代應有的板書,現(xiàn)代教育技術(shù)與傳統(tǒng)教育技術(shù)完美的結(jié)合才是提高課堂教學效率的有效途徑之一。

  五、教學過程:

  活動1:創(chuàng)設情境,列出方程

  設計說明:教師不失時機的對學生進行思想教育,激勵學生,寓德于教。體現(xiàn)了教學評價之美-激勵啟迪。

  設計說明:通過經(jīng)歷實際問題→列分式方程,體會分式方程是一種有效描述現(xiàn)實世界的模型,發(fā)展學生分析問題解決問題的能力,培養(yǎng)應用意識,激發(fā)學生的探究欲與學習熱情,為探索分式方程的解法做準備。

  活動2:總結(jié)定義,探究解法

  使學生能從整體上把握數(shù)、式、方程及它們之間的聯(lián)系與區(qū)別;通過合作探究分式方程的解法,培養(yǎng)學生的探究能力,增強利用類比轉(zhuǎn)化思想解決實際問題的能力及合作的意識。

  教學思考:再一次體現(xiàn)了對全章進行整體設計的好處,在學習16.1分式和16.2分式的運算時,幾乎每一節(jié)課都運用類比的思想-分式與分數(shù)類比和進行算法多樣化訓練,所以才出現(xiàn)了這樣好的效果。在利用媒體技術(shù)拓展學習內(nèi)容時要遵循以下原則:一、拓展內(nèi)容要與所學內(nèi)容有有機聯(lián)系。二、拓展內(nèi)容要符合學生實際認知水平,不要任意拔高。三、拓展內(nèi)容要適量,不要信息過載。

八年級數(shù)學說課稿11

  一、教材分析 :

  (一)、本節(jié)課在教材中的地位作用

  “勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學習的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學習中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標要求學生必須掌握。

  (二)、教學目標:根據(jù)數(shù)學課標的要求和教材的具體內(nèi)容,結(jié)合學生實際我確定了本節(jié)課的教學目標。知識技能:1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形

  過程與方法:

  1、通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成的過程

  2、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)與形結(jié)合方法的應用

  3、通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關(guān)問題。

  情感態(tài)度:

  1、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系

  2、在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神 (三)、學情分析: 盡管已到初二下學期學生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,這樣如何添輔助線就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點、難點和關(guān)鍵。

  重點: 勾股定理逆定理的應用 難點: 勾股定理逆定理的證明

  關(guān)鍵: 輔助線的添法探索

  二、教學過程 :

  本節(jié)課的設計原則是:使學生在動手操作的基礎上和合作交流的良好氛圍中,通過巧妙而自然地在學生的認識結(jié)構(gòu)與幾何知識結(jié)構(gòu)之間筑了一個信息流通渠道,進而達到完善學生的數(shù)學認識結(jié)構(gòu)的目的。

  (一)、復習回顧: 復習回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識之間的聯(lián)系。

  (二)、創(chuàng)設問題情境

  一開課我就提出了與本節(jié)課關(guān)系密切、學生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現(xiàn)馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視,激發(fā)了學生的興趣,因而全身心地投入到學習中來,創(chuàng)造了我要學的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學生感到數(shù)學就在身邊。

  (三)、學生在教師的指導下嘗試解決問題,總結(jié)規(guī)律(包括難點突破)

  因為幾何來源于現(xiàn)實生活,對初二學生來說選擇適當?shù)臅r機,讓他們從個體實踐經(jīng)驗中開始學習,可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

  這樣設計是因為勾股定理逆定理的證明方法是學生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學模型。

  接下來就是利用這個數(shù)學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創(chuàng)造的快樂。

  在同學們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學生看書的習慣,這也是在培養(yǎng)學生的自學能力。

  (四)、組織變式訓練

  本著由淺入深的原則,安排了三個題目。(演示)第一題比較簡單,讓學生口答,讓所有的學生都能完成。第二題則進了一層,字母代替了數(shù)字,繞了一個彎,既可以檢查本課知識,又可以提高靈活運用以往知識的能力。第三題則要求更高,要求學生能夠推出可能的結(jié)論,這些作法培養(yǎng)了學生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學生的思維,提高了課堂教學的效果和利用率。在變式訓練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋,調(diào)節(jié)教法,同時注意加強有針對性的個別指導,把發(fā)展學生的思維和隨時把握學生的學習效果結(jié)合起來。

  (五)、歸納小結(jié),納入知識體系

  本節(jié)課小結(jié)先讓學生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學今天的勾股定理逆定理是同學們通過自己親手實踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認識問題的好方法,希望同學在課外練習時注意用這種方法,這都是教給學習方法。

  (六)、作業(yè)布置

  由于學生的思維素質(zhì)存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。A組是基本的思維訓練項目,全體都要做,這樣有利于學生學習習慣的培養(yǎng),以及提高他們學好數(shù)學的信心。B組題適當加大難度,拓寬知識,供有能力又有興趣的學生做,日積月累,對訓練和培養(yǎng)他們的思維素質(zhì),發(fā)展學生的個性有積極作用。

  三、說教法、學法與教學手段

  為貫徹實施素質(zhì)教育提出的面向全體學生,使學生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據(jù)本節(jié)課的教學內(nèi)容、教學要求以及初二學生的年齡和心理特征以及學生的認知規(guī)律和認知水平,本節(jié)課我主要采用了以學生為主體,引導發(fā)現(xiàn)、操作探究的教學方法,即不違反科學性又符合可接受性原則,這樣有利于培養(yǎng)學生的學習興趣,調(diào)動學生的學習積極性,發(fā)展學生的思維;有利于培養(yǎng)學生動手、觀察、分析、猜想、驗證、推理能力和創(chuàng)新能力;有利于學生從感性認識上升到理性認識,加深對所學知識的理解和掌握;有利于突破難點和突出重點。

  此外,本節(jié)課我還采用了理論聯(lián)系實際的教學原則,以教師為主導、學生為主體的教學原則,通過聯(lián)系學生現(xiàn)有的經(jīng)驗和感性認識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學生獨立探討、主動獲取知識。

  總之,本節(jié)課遵循從生動直觀到抽象思維的認識規(guī)律,力爭最大限度地調(diào)動學生學習的積極性;力爭把教師教的過程轉(zhuǎn)化為學生親自探索、發(fā)現(xiàn)知識的過程;力爭使學生在獲得知識的過程中得到能力的培養(yǎng)。

八年級數(shù)學說課稿12

  各位領導、老師們:

  大家好!

  今天我說課的內(nèi)容是義務教育課程標準實驗教科書《數(shù)學》八年級上冊第十二章12.3.1等腰三角形性質(zhì)第一課時。下面,我從教材分析、教法分析、學法分析、教學過程、教學反思五個方面來匯報我對這節(jié)課的教學設想。

  一、教材分析

  1、教材的地位與作用:

  本節(jié)課內(nèi)容是在學生掌握了一般三角形和軸對稱的知識,具有初步的推理證明能力的基礎上進行學習的。使學生學會分析、學會證明,在培養(yǎng)學生的思維能力和推理能力等方面有重要的作用。通過等腰三角形的性質(zhì)反映在一個三角形中“等邊對等角”的邊角關(guān)系,并且是對軸對稱圖形性質(zhì)的直觀反映(三線合一)。它所倡導的“觀察---發(fā)現(xiàn)---猜想---論證”的數(shù)學思想方法是今后研究數(shù)學的基本思想方法。等腰三角形的性質(zhì)也是論證兩個角相等、兩條線段相等、兩條直線垂直的重要依據(jù),因此,本節(jié)內(nèi)容在教材中處于非常重要的地位,起著承前啟后的作用。

  2、教學目標:

  知識技能:理解掌握等腰三角形的性質(zhì);運用等腰三角形的性質(zhì)進行證明和計算。

  過程方法:通過實踐、觀察、證明等腰三角形的性質(zhì),發(fā)展學生合情推理能力和演繹推理能力。

  解決問題:通過觀察等腰三角形的對稱性,及運用等腰三角形的性質(zhì)解決有關(guān)的問題,提高學生觀察、分析、歸納、運用知識解決問題的能力,發(fā)展應用意識。

  情感態(tài)度:通過引導學生對圖形的觀察、發(fā)現(xiàn),激發(fā)學生的好奇心和求知欲,并在運用數(shù)學知識解答問題的活動中獲取成功的體驗,建立學習的自信心。

 。ǜ鶕(jù)教材內(nèi)容的地位與作用及教學目標,因此我將把本節(jié)課的重點確定為:等腰三角形的性質(zhì)的探究和應用。由于對文字語言敘述的幾何命題的證明要求嚴格且步驟繁瑣,此時八年級學生還沒有深刻的理解和熟練的掌握,因此我將把本節(jié)課的難點定為:等腰三角形性質(zhì)的推理證明。)

  3、教學重點與難點:

  重點:等腰三角形的性質(zhì)的探索和應用。

  難點:等腰三角形性質(zhì)的推理證明。

  二、教法設計:

  教法設想:我采用探索發(fā)現(xiàn)法和啟發(fā)式教學法完成本節(jié)的教學,在教學中通過創(chuàng)設情景,設計問題,引導學生自主探索,合作交流,組織學生動手操作,觀察現(xiàn)象,提出猜想,推理論證等。有效地啟發(fā)學生的思考,使學生真正成為學習的主體。

  三、學法設計:

  在學生學習的過程中,我將從兩個方面指導學生學習,一方面老師大膽放手,讓學生去自主探究等腰三角形的性質(zhì),另一方面,在對等腰三角形性質(zhì)的證明過程中,老師要巧妙引導,分散難點。這樣做既有利于活躍學生的思維,又能幫助他們探本求源,這樣也體現(xiàn)了以“教師為主導,學生為主體”的新課改背景下的教學原則。

  四、教學過程:

  根據(jù)制定的教學目標,圍繞重點,突破難點,我將從以下七個方面設計我的教學過程:

  1、創(chuàng)設情景:

  首先向同學們出示精美的建筑物圖片,并提出問題串:(1)什么是軸對稱圖形?這些圖片中有軸對稱圖形嗎? (2)里面有等腰三角形嗎?然后向?qū)W生介紹等腰三角形的定義以及邊角等相關(guān)的概念,由于學生小學就已經(jīng)接觸過,所以學生很容易理解。再提出第三個問題:(3)a.等腰三角形是軸對稱圖形嗎?b.等腰三角形具備哪些性質(zhì)呢?引出本節(jié)課的課題-我們這節(jié)課來探究等腰三角形的性質(zhì)。--板書課題。

 。、動手操作,大膽猜想:

  ①拿出課下制作的等腰三角形的紙片,它是軸對稱圖形嗎?對稱軸是誰?用你手中的紙片說明你的看法?②等腰三角形沿對稱軸折疊后,你能得到哪些結(jié)論?(看誰得到的結(jié)論多)

 、鄯纸M討論。(看哪一組氣氛最活躍,結(jié)論又對又多.)

  然后小組代表發(fā)言,交流討論結(jié)果。

 、軞w納:你能猜想得到等腰三角形具有什么性質(zhì)?你能用文字語言歸納一下嗎?

 。ń處熞龑W生進行總結(jié)歸納得出性質(zhì)1,2)

  性質(zhì)1:等腰三角形的兩底角相等。(簡寫成“等邊對等角”)

  性質(zhì)2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。(簡稱“三線合一”)

 。ㄔO計意圖:由學生自己動手折紙活動,根據(jù)等腰三角形軸對稱性,大膽猜測等腰三角形的性質(zhì),培養(yǎng)學生的觀察分析、概括總結(jié)能力。也發(fā)展了學生的幾何直觀。教師在學生猜想的基礎上,引導學生觀察、完善、歸納出性質(zhì)1和性質(zhì)2。培養(yǎng)了學生進行合情推理的能力。)

  3、證明猜想,形成定理:

  你能證明等腰三角形的性質(zhì)嗎?

  對于這種幾何命題的證明需要三大步驟:分析題設結(jié)論,畫出圖形寫出已知和求證,最后進行推理證明。這對于八年級學段的學生難度較大,為了突破難點,我決定設計以下三個階梯問題:

 。1)找出“性質(zhì)1”的題設和結(jié)論,畫出的圖形,寫出已知和求證。

 。2)證明角和角相等有哪些方法?(學生可能會想到平行線的性質(zhì),全等三角形的性質(zhì))

 。3)通過折疊等腰三角形紙片,你認為本題用什么方法證明∠B=∠C,寫出證明過程。

  問題1的設計使得學生順利地將文字語言轉(zhuǎn)化為符號語言,幫助學生順利地寫出已知和求證;

  問題2提供給學生了解題思路,引導學生用舊的知識解決新的問題,體現(xiàn)了數(shù)學的轉(zhuǎn)化思想。找到新知識的生長點,就是三角形的全等。

  問題3的設計目的:因為輔助線的添加是本題中的又一難點,因此讓學生對折等腰三角形紙片,使兩腰重合,使學生在形成感性認識的同時,意識到要證明∠B=∠C,關(guān)鍵是將∠B和∠C放在兩三角形中去,構(gòu)造全等三角形,老師再及時設問:你認為可以通過什么方法可以將∠B和∠C放在兩個三角形中去呢?再次讓學生思考,由于對知識的發(fā)生,發(fā)展有了充分的了解,學生探討以后可能會得出以下三種方法:

 。1)作頂角∠BAC的平分線,

 。2)作底邊BC的中線,

 。3)作底邊BC的高。以作頂角平分線為例,讓一生板演,其他學生在練習本上寫出完整的證明過程。以達到規(guī)范學生的解題步驟的目的。其他兩種證法,讓學生課下證明。這樣,學生就證明了性質(zhì)1,同時由于△BAD≌△CAD,也很容易得出等腰三角形的頂角平分線平分底邊,并垂直于底邊。用類似的方法還可以證明等腰三角形底邊的中線平分頂角且垂直于底邊,等腰三角形底邊上的高平分頂角且平分底邊,這也就證明了性質(zhì)2。

  (設計意圖:教師精心設計問題串引導學生通過動手,觀察,猜想,歸納,猜測出等腰三角形的性質(zhì),發(fā)展了學生的合情推理能力,同時也讓學生明確,結(jié)論的正確性需要通過演繹推理加以證明。這樣把對性質(zhì)的證明作為探索活動的自然延續(xù)和必要發(fā)展,使學生感受到合情推理與演繹推理是相輔相成的兩種形式,同時感受到探索證明同一個問題的不同思路和方法,發(fā)展了學生思維的廣闊性和靈活性。)

  (4)你能用符號語言表示性質(zhì)1和性質(zhì)2嗎?

  (設計意圖:把文字語言轉(zhuǎn)換為符號語言,讓學生建立符號意識,這有助于學生理解符號的使用是數(shù)學表達和進行數(shù)學思考的重要形式!

  4、性質(zhì)的應用:

  例一:在等腰△ABC中,AB=AC,∠A=50°,則∠B=_____,∠C=______

  變式練習:

  1、在等腰中,∠A=50°,則 ∠B=___,∠C=___

  2、在等腰中,∠A=100°,則∠B=___,∠C=___

  設計意圖:此例題的重點是運用等腰三角形“等邊對等角”這一性質(zhì)和三角形的內(nèi)角和,突出頂角和底角的關(guān)系,如

  例一,學生就比較容易得出正確結(jié)果,對變式練習(1)、(2)學生得出正確的結(jié)果就有困難,容易漏解,讓學生把變式題與例一進行比較兩題的條件,讓學生認識等腰三角形在沒有明確頂角和底角時,應分類討論:變式1(如圖)①當∠A=50°為頂角時,則∠B=65°,∠C=65°。②當∠A=50°為底角時,則∠B=50°,∠C=80°;或∠B=80°,∠C=50°。變式2①當∠A=100°為頂角時,則∠B=40°,∠C=40°。②當∠A=100°為底角時,則△ABC不存在。由此得出,等腰三角形中已知一個角可以求出另兩個角(頂角和底角的取值范圍:0°<頂角<180°,0°<底角<90°)。

  例二:在等腰△ABC中,AB=5,AC=6,則△ABC的周長=_______

  變式練習:在等腰△ABC中,AB=5,AC=12,則 △ABC的周長=______

 。ㄔO計意圖:此例題的重點是運用等腰三角形的定義,以及等腰三角形腰和底邊的關(guān)系,并強調(diào)在沒有明確腰和底邊時,應該分兩種情況討論。如例二,①當AB=5為腰時,則三邊為5,5,6;②當AB=5為底時,則三邊為6,6,5。變式練習①:當AB=5為腰時,三邊為5,5,12;②當AB=5為底時,三邊為12,12,5。此時同學們就會毫不猶豫地得出三角形的周長,這時老師就可以提出質(zhì)疑,讓同學們之間討論(學生容易忽視三角形三邊關(guān)系,看能否構(gòu)成一個三角形)。

  例三、如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。

 。ɡ3是課本例題,有一定難度,讓學生展開討論,老師參與討論,認真聽取學生分析,引導學生找出角之間的關(guān)系,利用方程的思想解決問題,并書寫出解答過程。本題運用了等腰三角形性質(zhì)1,并體現(xiàn)了利用方程解決幾何問題的思想。)

  例四:

  在△ABC中,點D在BC上,給出4個條件:①AB=AC②∠BAD=∠DAC③AD⊥BC④BD=CD,以其中2個條件作題設,另外2個條件作結(jié)論,你能寫出一個正確的命題嗎?看誰寫得多。(分組討論搶答)

  5、鞏固提高

 。1)等腰三角形一腰上的高與另一腰的夾角為30°,則這個等腰三角形頂角為度。

 。2)如圖,在△ABC中,AB=AC,D是BC邊上的中點,∠B=30。求∠1和∠ADC的度數(shù)。

 。3)課本本章數(shù)學活動三“等腰三角形中相等的線段”

  設計意圖:

  (1)題運用等腰三角形的性質(zhì)1及等腰三角形一腰上的高的畫法,由于題目沒有圖,要用到分類討論的數(shù)學思想,學生能正確畫出銳角和鈍角三角形兩種圖形就容易得出結(jié)果,也滲透了一題多解。

 。2)題同時運用了等腰三角形的性質(zhì)1,性質(zhì)2,還有三角形的內(nèi)角和這三個知識點,培養(yǎng)學生對于知識的靈活運用,“討論”是本章的數(shù)學活動3“等腰三角形中相等的線段”。與等腰性質(zhì)的證明思路類似,先通過等腰三角形的對稱性猜想距離是相等的,然后通過做輔助線構(gòu)造全等三角形來進行嚴密的推理。更加說明了合情推理和演繹推理是相輔相成的。

  6、課堂小結(jié):不僅僅說你收獲了什么,而是讓學生從知識上,思想方法上,以及輔助線的做法上等方面具體總結(jié)一下。然后教師結(jié)合學生的回答完善本節(jié)知識結(jié)構(gòu)。學生對于自己的疑惑提出小組內(nèi)交流,還沒解決則全班交流。

  7、布置作業(yè):

  P55練習1、2、3題

  P56習題1、4、6,(選做7,8題)

八年級數(shù)學說課稿13

  一、說教材:

  本章的主要內(nèi)容包括:分式的概念,分式的基本性質(zhì),分式的約分與通分,分式的加、減、乘、除運算,整數(shù)指數(shù)冪的概念及運算性質(zhì),分式方程的概念及可化為一元一次方程的分式方程的解法。

  全章共包括三節(jié):

  16.1 分式

  16.2 分式的運算

  16.3 分式方程

  其中,16.1 節(jié)引進分式的概念,討論分式的基本性質(zhì)及約分、通分等分式變形,是全章的理論基礎部分。16.2節(jié)討論分式的四則運算法則,這是全章的一個重點內(nèi)容,分式的四則混合運算也是本章教學中的一個難點,克服這一難點的關(guān)鍵是通過必要的練習掌握分式的各種運算法則及運算順序。在這一節(jié)中對指數(shù)概念的限制從正整數(shù)擴大到全體整數(shù),這給運算帶來便利。16.3節(jié)討論分式方程的概念,主要涉及可以化為一元一次方程的分式方程。解方程中要應用分式的基本性質(zhì),并且出現(xiàn)了必須檢驗(驗根)的環(huán)節(jié),這是不同于解以前學習的方程的新問題。根據(jù)實際問題列出分式方程,是本章教學中的另一個難點,克服它的關(guān)鍵是提高分析問題中數(shù)量關(guān)系的能力。

  分式是不同于整式的另一類有理式,是代數(shù)式中重要的基本概念;相應地,分式方程是一類有理方程,解分式方程的過程比解整式方程更復雜些。然而,分式或分式方程更適合作為某些類型的問題的數(shù)學模型,它們具有整式或整式方程不可替代的特殊作用。

  借助對分數(shù)的認識學習分式的內(nèi)容,是一種類比的認識方法,這在本章學習中經(jīng)常使用。解分式方程時,化歸思想很有用,分式方程一般要先化為整式方程再求解,并且要注意檢驗是必不可少的步驟。

  二、說教學目標:

  1.進一步掌握分式的有關(guān)概念,相關(guān)性質(zhì)及運算法則,分式方程的解法。

  2.會利用分式方程解決實際問題,培養(yǎng)分析問題,解決問題的能力和應用意識。

  三、說教學重難點

  重點:

  1、能熟練的進行分式的約分、通分和分式的運算。

  2、會解可化為一元一次方程的分式方程,了解產(chǎn)生增根的原因。

  3、會用分式方程解決實際問題。

  難點:用分式方程解決實際問題。

  四、說教法學法

  閱讀教材,歸納知識點,疑難問題小組合作探究。

  五、說教學過程:

  學生在自主梳理課本內(nèi)容的基礎上,課堂上展示交流以下問題:

  概念部分:

  舉例說明什么是分式、分式方程、分式的約分、通分和最簡分式

  分式:

  分式方程:

  分式的約分:

  分式的通分:

  最簡分式:

  性質(zhì)部分

  (1) 什么是分式的基本性質(zhì)?本章哪些內(nèi)容用到了分式的基本性質(zhì)?

  (2) 整數(shù)指數(shù)冪的運算性質(zhì)有哪些?

  3法則部分

  用自己的語言敘述分式的加法、減法、乘法、除法及乘方的運算法則(各舉一例說明這些法則) 。

  這部分內(nèi)容由每個小組完成。目的是培養(yǎng)學生梳理知識的能力,同時也能更好的掌握本章的基礎知識,學生完全可獨立完成。這些基礎知識也為分式的運算、化簡、解方程奠定基礎的所以學生必須學會這部分內(nèi)容。為此讓學生舉例說明就更有必要了。

  鞏固訓練,提升能力:

  1.在式子,,,,·,中

  整式有 ; 分式有 。

  2.若分式:有意義,則,x ;若分式無意義,則x ;若分式的值為零,則x= 。

  3.解分式方程的基本思想是把分式方程轉(zhuǎn)化為 方程,其步驟為:

  (1)去分母在方程兩邊都 ,把分式方程轉(zhuǎn)化為 方程。

  (2)解這個 方程。

  (3)檢驗,檢驗的方法是 。

  4.約分= , 5.將5.62×

  5 、10用小數(shù)表示為( )

  A.0.000 000 00562 B.0.000 000 0562

  C.0.000 000562 D.0.000 000 000562

  6.下列式子從左到右變形一定正確的是( )

  A. B. C. D. =

  7.下列變形正確的是( )

  A.3a= B. C. D.

  8.通分(1) , (2)

  9.(1)計算 (2) 解方程

  10.計算

  11.先化簡:÷。再任選一個適當?shù)膞值代入求值 。 .

  12已知:,試求A、B的值。

  13.已知:求的值.

  14.已知,求的值.

  15.若關(guān)于x的分式方程有增根,求m的值.

  16某工程隊承接了3000米的修路任務,在修好600米后,引進了新設備,工作效率是原來的2倍,一共用30天完成了任務,求引進新設備前平均每天修路多少米?

  17.學校要舉行跳遺繩比賽,同學們都積極練習,甲同學跳180個所用時間,乙同學可以跳240個,又知甲每分鐘比乙少跳5個,求每人每分鐘各跳多少個?

  18.探究題:探索規(guī)律:,個位數(shù)字是3;,個位數(shù)字是9;個位數(shù)字是7;,個位數(shù)字是1;,個位數(shù)字是3 ;,個位數(shù)字是9;的個位數(shù)字是 ;的個位數(shù)字是 。

  19.根據(jù)所給方程,聯(lián)系生活實際編寫一道應用題(要求:題目完整,題意清楚,不要求解方程.)

  這部分編寫的目的是運用基礎知識解決實際問題從而達到解決問題的目的,提綱下發(fā)全體學生都做,然后針對檢查情況把典型題寫在黑板上然后由學生講解,教師適時補充。最后19題是開放試題但教師要總結(jié)規(guī)律和方法,工程問題怎樣編,行程問題怎樣編,教給學生方法是關(guān)鍵。

  六、教學反思:

  自從實行學、教、測教學模式以來學生的能力得到真正的提高。在本章的教學中我主要是采用類比的教學方法,通過類比分數(shù)來學習分式效果非常好。本節(jié)復習課讓學生歸納知識體系真正培養(yǎng)了學生的歸納整理知識的能力。復習課注重習題方法的探究。學生思維能力的培養(yǎng)。類型題的規(guī)律的探究。在本節(jié)課中體現(xiàn)的還可以如果時間允許的話效果還能好一些。值得我們思考的是在今后的備課中還應注意時間的分配和重點問題的處理。同時數(shù)學課上應該多交給學生解題方法、解題技巧、規(guī)律探索、思維能力的訓練等。

八年級數(shù)學說課稿14

各位老師:

  你們好!

  今天我要為大家講的課題是《全等三角形的判定》。

  首先,我對本節(jié)教材進行一些分析:

  一、教材分析(說教材):

  1、教材所處的地位和作用:

  在此之前學生已學習了全等三角形的定義、性質(zhì),對全等三角形有了一定的了解,這為過渡到本節(jié)的深入學習起著鋪墊作用。本節(jié)內(nèi)容是在本章內(nèi)容中,占據(jù)重要的的地位。以及為其他學科和今后的幾何學習打下基礎。

  2、教育教學目標:

  根據(jù)上述教材分析,考慮到學生已有的認知結(jié)構(gòu)心理特征,制定如下教學目標:

 。1)知識目標:

 、賹θ取斀、對應邊、對應角的定義,能夠熟練掌握,并達到更深一層的理解。

 、谀軌蚶贸咭(guī)畫出全等的三角形,學生具有一定的作圖能力。

 、壅莆詹⒗斫馊切稳扰卸ǘɡ碇械膕ss和sAs。

 、苣軌蜻\用sss和sAs判定定理判定三角形是否全等,利用三角形全等解決一些實際問題。

  ⑤通過教學培養(yǎng)學生分析問題,讀圖分析,解決實際問題,培養(yǎng)學生運用知識的能力,培養(yǎng)學生加強理論聯(lián)系實際的能力,

  (2)情感目標:

  通過的師生共同摸索判斷全等三角形全等的方法,激發(fā)學生學習興趣。

  3、重點難點:

 、僬莆詹⒗斫馊切稳鹊呐卸ǘɡ

  ②運用定理判定三角形全等,利用全等三角形解決實際的問題和幾何題

  二、教學策略(說教法)

  1、教學手段:為了讓學生充分理解和掌握三角形判定定理,突破難點,我在教學過程中,采用兩探究引出定理,兩個運用定理的例子,來進行教學。探究中主要用尺規(guī)作全等三角形的方法中引出全等三角形的條件,進而得出定理。這樣學生就更容易理解和掌握定理。在用兩個練習鞏固知識。

  2、教學方法及其理論依據(jù):為了調(diào)動學生學習的積極性,充分體現(xiàn)課堂教學的主體性,我采用自學、議論、引導教學法,以學生為主體,老師為主導,引導學生運用觀察、分析、概括的方法學習這部分內(nèi)容,在整個教學過程當中,貫穿以學生為主體的原則,充分鼓勵和表揚同學。

  3、學情分析:(說學法)

  1、八年級學生的思維已逐步從直觀的形象思維為主向抽象的邏輯思維過渡,而且具備一定的信息收集的能力。

  2、學生自主探索,思考問題,獲取知識,掌握方法,真正成為學習的主體。

  3、學生在在討論學習中體驗學習的快樂。討論交流的友好氛圍,讓學生更有機會體驗自己與他人的想法,從而掌握知識,發(fā)展技能,獲得愉快的心理體驗。

  4、教學程序:

 。1)復習回顧上節(jié)課內(nèi)容:

  定義:能夠完全重合的三角形叫做全等三角形,重合的邊叫對應邊,重合的角叫對應角。

  性質(zhì):全等三角形對應邊和對應角相等。

  三角形全等的性質(zhì)讓我們知道AB=A’B’Bc=B’c’Ac=A’c’∠A=∠A’∠B=∠B’∠c=∠c’,滿足六個條件中這一部分,能確定△ABc≌△A’B’c’,先讓學生畫出△ABD,再讓學生在畫△A’B’c’過程中明白,確定一個條件或兩個條件下不能確定兩個三角形全等,通過適當時間的引導探究得出得出,當AB=A’B’Bc=B’c’Ac=A’c’時,只能畫出一個A’B’c’滿足條件,于是得出定理:三個對應邊相等的兩個三角形全等,簡寫成sss。

 。2)得出定理,我通過講解簡單的例題,讓學生懂得定理sss定理的運用。

  (3)探究2得出:定理兩邊和它們的夾角對應相等的兩個三角形全等,簡寫成sAs

  (4)通過解決生活實例,講解三角形全等的運用。

 。5)練習:在適當?shù)臅r間過后給出參考答案,并進行簡單的講解。

 。6)小結(jié):通過本節(jié)課的學習,你有哪些收獲?

 。7)我的板書:我會把復習內(nèi)容和這節(jié)課的定理用紅色粉筆標明在左邊,中間板書探究和例題的內(nèi)容,右邊板書練習的參考答案。

  (8)布置作業(yè):P37,第1,3題。

八年級數(shù)學說課稿15

  一說教材

  《等腰三角形的性質(zhì)》是人教版教科書八年級上冊第13章第三節(jié)第1課時的教學內(nèi)容。在此之前,學生們已經(jīng)學習了等腰三角形的定義以及軸對稱,學生已經(jīng)具備了一定的動手操作能力。這些知識為本節(jié)課的學習等腰三角形的性質(zhì)起到了鋪墊的作用。而本節(jié)課的知識為以后將為以后學習的四邊形及多邊形的相關(guān)知識奠定了基礎。

  二說教學目標

  根據(jù)教學大綱和新課程標準的要求,我認真鉆研教材,特制定以下三個教學目標:

  1掌握等腰三角形的性質(zhì)

  2知道等腰三角形的性質(zhì)的推理過程

  3會靈活運用等腰三角形的性質(zhì)解決相關(guān)的數(shù)學問題

  三 說教學重、難點

  結(jié)合八年級學生的年齡特點、心理特征和現(xiàn)有的知識結(jié)構(gòu)。我認為本節(jié)課的重點是等腰三角形的兩個性質(zhì)即“等邊對等角”;“三線合一”。

  由于八年級學生的邏輯推理能力和理解運用能力還較弱,因此等腰三角形的性質(zhì)的推理過程及會靈活運用等腰三角形的性質(zhì)解決相關(guān)的數(shù)學問題是本節(jié)課的難點。

  四 說教法和學法

  本節(jié)課我采用的教法是啟發(fā)式教學法、動手操作法。

  學生的學法是:自主探究法、合作討論法。

  五說教學過程

  本節(jié)課我主要是根據(jù)“四步五環(huán)節(jié)”教學法從以下五個環(huán)節(jié)進行教學的。

  1 復習導入

  通過教師在黑板上畫一個三角形(任意取一個點為圓心,適當?shù)拈L為半徑畫弧,在所畫的弧上任意取兩個點順次連接這三個點所得的三角形是什么三角形?)的方法能確定是所畫的三角形是等腰三角形。這樣導入可以讓學生知道如何用尺規(guī)作圖做一個等腰三角形,并引導他們回憶等腰三角形的概念及腰、底邊、頂角、底角的概念。

  2探究新知

  在同學們已經(jīng)學習了軸對稱的基礎上通過對折剪紙觀察猜想得出等腰三角形的性質(zhì),這樣設計既能提高學生的動手操作能了,又能更直觀的發(fā)現(xiàn)等腰三角形的三條性質(zhì)即:對稱性、等邊對等角、三線合一。在此基礎上教師在引導學生寫出推理過程,同時也提高了學生的邏輯思維能力.

  3理解與運用

  為了讓學生熟練的掌握等腰三角形的三個性質(zhì),我設計了一道相關(guān)證明題,讓學生先自主探究不會的同學請教會做的給其講解進行兵練兵,再找一名學生將解題過程板術(shù)黑板上,教師進行點評,以提高學生書寫完整、簡潔的解題過程的能力。

  4強化鞏固

  在這一教學環(huán)節(jié)中我設計了2道求角度的問題,讓學生通過由易到難的探究過程將所學的知識進一步升華,培養(yǎng)學生的探究精神。

  5小結(jié)

  設計三個問題讓學生通過思考討論回答出來,從而把本節(jié)課的知識系統(tǒng)化。以提高學生的總結(jié)概括能力。

  本節(jié)課我采用觀察法和動手操作法導入新課充分的調(diào)動了學生學習的主動性和積極性順利完成的預定的教學任務,取得了良好的教學效果。

【八年級數(shù)學說課稿】相關(guān)文章:

八年級數(shù)學的說課稿06-16

八年級數(shù)學《除法》說課稿09-01

八年級數(shù)學說課稿06-10

八年級數(shù)學下冊的說課稿06-10

八年級數(shù)學的優(yōu)秀說課稿01-17

八年級數(shù)學《菱形》說課稿11-05

八年級數(shù)學說課稿11-21

八年級數(shù)學菱形說課稿08-06

八年級數(shù)學說課稿09-13

數(shù)學的說課稿02-22

临安市| 虹口区| 龙海市| 渝北区| 龙岩市| 林西县| 孟津县| 曲靖市| 德昌县| 新河县| 清丰县| 清水县| 长垣县| 叙永县| 四子王旗| 临沭县| 安阳市| 武夷山市| 碌曲县| 临朐县| 盘锦市| 蚌埠市| 昭通市| 香河县| 北碚区| 长泰县| 平度市| 义马市| 河南省| 任丘市| 平罗县| 沙洋县| 徐州市| 佳木斯市| 历史| 甘南县| 内江市| 新建县| 马尔康县| 庄浪县| 宁夏|